初中数学人教版八年级上册13.3.2 等边三角形课时训练
展开2023年人教版数学八年级上册
《13.3.2 等边三角形》同步精炼
一 、选择题
1.如图,过等边△ABC的顶点A作射线,若∠1=20°,则∠2的度数是( )
A.100° B.80° C.60° D.40°
2.等腰三角形补充下列条件后,仍不一定成为等边三角形的是( )
A.有一个内角是60° B.有一个外角是120°
C.有两个角相等 D.腰与底边相等
3.已知∠AOB=30°,点P在∠AOB内部,P1与P关于OA对称,P2与P于OB对称,则△P1OP2的形状一定是( )
A.直角三角形
B.等边三角形
C.底边和腰不相等的等腰三角形
D.钝角三角形
4.以下叙述中不正确的是( )
A.等边三角形的每条高线都是角平分线和中线
B.有一内角为60°的等腰三角形是等边三角形
C.等腰三角形一定是锐角三角形
D.在一个三角形中,如果两条边不相等,那么它们所对的角也不相等;反之,如果两个角不相等,那么它们所对的边也不相等
5.给出下列三角形:
①有两个角等于60°;
②有一个角等于60°的等腰三角形;
③三个外角(每个顶点处各取一个外角)都相等的三角形;
④一腰上的中线也是这条腰上的高的等腰三角形.
其中是等边三角形的是( )
A.①②③ B.①②④ C.①③ D.①②③④
6.如图,在△ABC中,D、E在BC上,且BD=DE=AD=AE=EC,则∠BAC的度数是( )
A.30° B.45° C.120° D.15°
7.如图,E是等边△ABC中AC边上的点,∠1=∠2,BE=CD,则△ADE的形状是( )
A.等腰三角形 B.等边三角形 C.不等边三角形 D.不能确定形状
8.如图,在△ABC中,AB=AC,∠A=120°,BC=6cm,AB的垂直平分线交BC于点M,交AB于点E,AC的垂直平分线交BC于点N,交AC于点F,则MN的长为( )
A.4cm B.3cm C.2cm D.1cm
9.如图,过边长为1的等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线一点,当PA=CQ时,连结PQ交AC于D,则DE的长为( )
A. B. C. D.
10.一个六边形的六个内角都是120°(如图),连续四条边的长依次为 1,3,3,2,则这个六边形的周长是( )
A.13 B.14 C.15 D.16
二 、填空题
11.如图,将边长为5 cm的等边△ABC,沿BC向右平移3 cm,得到△DEF,DE交AC于M,则△MEC是________三角形,DM=________cm.
12.如图,将两个完全相同的含有30°角的三角板拼接在一起,则拼接后的△ABD的形状是 .
13.在△ABC中,∠A=∠B=∠C,则△ABC是 三角形.
14.如图,等边△ABC的边长如图所示,那么y=________.
15.如图,在等边△ABC中,BD=CE,AD与BE相交于点F,则∠AFE=______.
16.如图,四边形ABCD中,连接AC,BD,△ABC是等边三角形,∠ADC=30°,并且AD=4.5,BD=7.5,则CD的长为 .
三 、解答题
17.如图,已知在△ABC中,AB=BC,∠ABC=120°,BE⊥AC于点D,且DE=DB,试判断△CEB的形状,并说明理由.
18.如图,在△ABC中,点D是AB上的一点,且AD=DC=DB,∠B=30°.
求证:△ADC是等边三角形.
19.如图,D是等边△ABC的边AB上的一动点,以CD为一边向上作等边△EDC,连接AE,找出图中的一组全等三角形,并说明理由.
20.如图,等边△ABC中,AD是∠BAC的角平分线,E为AD上一点,以BE为一边且在BE下方作等边△BEF,连接CF.
(1)求证:AE=CF;
(2)求∠ACF的度数.
21.如图,△ABC是等边三角形,AD是高,并且AB恰好是DE的垂直平分线.
求证:△ADE是等边三角形.
22.如图,已知在等边三角形ABC中,点D、E分别在直线AB、直线AC上,且AE=BD.
(1)当点D、E分别在边AC、边AB上时,如图1所示,EB与CD相交于点G,求∠CGE的度数;
(2)当点D、E分别在边CA、边AB的延长线上时,如图2所示,∠CGE的度数是否变化?如不变,请说明理由.如变化,请求出∠CGE的度数.
答案
1.A
2.C
3.B.
4.C.
5.D.
6.C
7.D.
8.C
9.A.
10.C.
11.答案为:等边,3.
12.答案为:等边三角形;
13.答案为:等边.
14.答案为:3
15.答案为:60°.
16.答案为:6.
17.解:△CEB是等边三角形.
证明:∵AB=BC,∠ABC=120°,BE⊥AC,
∴∠CBE=∠ABE=60°.
又DE=DB,BE⊥AC,
∴CB=CE.
∴△CEB是等边三角形.)
18.证明:∵DC=DB,
∴∠B=∠DCB=30°,
∴∠ADC=∠DCB+∠B=60°.
又∵AD=DC,
∴△ADC是等边三角形.
19.解:△BDC≌△AEC.理由如下:
∵△ABC、△EDC均为等边三角形,
∴BC=AC,DC=EC,∠BCA=∠ECD=60°.
从而∠BCD=∠ACE.
在△BDC和△AEC中,
,
∴△BDC≌△AEC(SAS).
20.证明:(1)∵△ABC是等边三角形,
∴AB=BC,∠ABE+∠EBC=60°.
∵△BEF是等边三角形,
∴EB=BF,∠CBF+∠EBC=60°.
∴∠ABE=∠CBF.
在△ABE和△CBF中,
,
∴△ABE≌△CBF(SAS).
∴AE=CF.
(2)∵等边△ABC中,AD是∠BAC的角平分线,
∴∠BAE=30°,∠ACB=60°.
∵△ABE≌△CBF,
∴∠BCF=∠BAE=30°.
∴∠ACF=∠BCF+∠ACB=30°+60°=90°.
21.证明:∵点A在DE的垂直平分线上,
∴AE=AD,
∴△ADE是等腰三角形,
∵AB⊥DE,
∴∠ADE=90°-∠BAD,
∵AD⊥BD,
∴∠B=90°-∠BAD,
∵△ABC是等边三角形,
∴∠B=60°,
∴∠ADE=∠B=60°,
∴△ADE是等边三角形.
22.(1)证明:∵△ABC为等边三角形,
∴AB=BC,∠A=∠ABC=60°,
在△ABE和△BCD中,
AE=BD,∠A=∠DBC,AB=BC,
∴△ABE≌△BCD,
∴∠ABE=∠BCD,
∵∠ABE+∠CBG=60°,
∴∠BDG+∠CBG=60°,
∵∠CGE=∠BCG+∠CBG,
∴∠CGE=60°;
(2)证明:∵△ABC为等边三角形,
∴AB=BC,∠CAB=∠ABC=60°,
∴∠EAB=∠CBD=120°,
在△ABE和△BCD中,
AB=BC,∠EAB=∠CBD,AE=BD,
∴△ABE≌△BCD(SAS),
∴∠D=∠E,
∵∠ABE=∠DBG,∠CAB=∠E+ABE=60°,
∴∠CGE=∠D+∠DBG=60°.
初中数学人教版八年级上册13.3.2 等边三角形同步达标检测题: 这是一份初中数学人教版八年级上册13.3.2 等边三角形同步达标检测题,共6页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
人教版八年级上册13.3.2 等边三角形综合训练题: 这是一份人教版八年级上册13.3.2 等边三角形综合训练题,共11页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
人教版八年级上册13.3.2 等边三角形同步训练题: 这是一份人教版八年级上册13.3.2 等边三角形同步训练题,共5页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。