搜索
    上传资料 赚现金
    英语朗读宝

    2023年中考数学高频考点突破——二次函数与角度 (含答案) 试卷

    2023年中考数学高频考点突破——二次函数与角度 (含答案)第1页
    2023年中考数学高频考点突破——二次函数与角度 (含答案)第2页
    2023年中考数学高频考点突破——二次函数与角度 (含答案)第3页
    还剩40页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2023年中考数学高频考点突破——二次函数与角度 (含答案)

    展开

    这是一份2023年中考数学高频考点突破——二次函数与角度 (含答案),共43页。试卷主要包含了我们规定,已知,如图,抛物线经过,两点,把B,C代入中,得等内容,欢迎下载使用。
    2023年中考数学高频考点突破——二次函数与角度
    1. 对于平面直角坐标系xOy中的点P(a,b),若点P的坐标为(a+,ka+b)(k为常数,k≠0),则称点P′为点P的“k属派生点”.例如:P(1,4)的“2属派生点”为P′(1+,2×1+4),即P′(3,6).
    (1) ① 点P(-1,-2)的“2属派生点”P′的坐标为_______________
    ② 若点P的“k属派生点”为P′(3,3),请写出一个符合条件的点P的坐标_____________
    (2) 若点P在x轴的正半轴上,点P的“k属派生点”为P′点,且△OPP′为等腰直角三角形,则k的值为____________
    (3) 如图,点Q的坐标为(0,),点A在函数(x<0)的图象上,且点A是点B的“属派生点”.当线段BQ最短时,求B点坐标.

    2.我们规定:形如 的函数叫做“奇特函数”.当时,“奇特函数” 就是反比例函数.
    (1) 若矩形的两边长分别是2和3,当这两边长分别增加x和y后,得到的新矩形的面积为8 ,求y与x之间的函数关系式,并判断这个函数是否为“奇特函数”;
    (2) 如图,在平面直角坐标系中,点O为原点,矩形OABC的顶点A,C的坐标分别为(9,0)、(0,3).点D是OA的中点,连结OB,CD交于点E,“奇特函数”的图象经过B,E两点.
    ① 求这个“奇特函数”的解析式;
    ② 把反比例函数的图象向右平移6个单位,再向上平移 个单位就可得到①中所得“奇特函数”的图象.过线段BE中点M的一条直线l与这个“奇特函数”的图象交于P,Q两点,若以B、E、P、Q为顶点组成的四边形面积为,请直接写出点P的坐标.

    3.已知:一次函数的图象与反比例函数()的图象相交于A,B两点(A在B的右侧).
    (1)当A(4,2)时,求反比例函数的解析式及B点的坐标;
    (2)在(1)的条件下,反比例函数图象的另一支上是否存在一点P,使△PAB是以AB为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,请说明理由.
    (3)当A(a,﹣2a+10),B(b,﹣2b+10)时,直线OA与此反比例函数图象的另一支交于另一点C,连接BC交y轴于点D.若,求△ABC的面积.

    4.如图,过原点的直线和与反比例函数的图象分别交于两点A,C和B,D,连结AB,BC,CD,DA.

    (1)四边形ABCD一定是 四边形;(直接填写结果)
    (2)四边形ABCD可能是矩形吗?若可能,试求此时和之间的关系式;若不可能,说明理由;
    (3)设P(,),Q(,)()是函数图象上的任意两点,,,试判断,的大小关系,并说明理由.
    5.如图,在平面直角坐标系中,等腰直角三角形的直角顶点B的坐标为,点A在y轴正半轴上,将沿y轴向下平移得到,点B的对应点E恰好在反比例函数的图象上.

    (1)求m的值;
    (2)求平移的距离;
    (3)点P是x轴上的一个动点,当的周长最小时,请直接写出此时点P的坐标及的周长.
    6.如图,A(﹣1,0),B(4,0),C(0,3)三点在抛物线y=ax2+bx+c上,D为直线BC上方抛物线上一动点,E在CB上,∠DEC=90°
    (1)求抛物线的函数表达式;
    (2)如图1,求线段DE长度的最大值;
    (3)如图2,F为AB的中点,连接CF,CD,当△CDE中有一个角与∠CFO相等时,求点D的横坐标;若不存在,请说明理由.

    7.已知抛物线y=kx2-4kx+3k(k>0)与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,顶点为D.
    (1)如图1,请求出A、B两点的坐标;
    (2)点E为x轴下方抛物线y=kx2-4kx+3k(k>0)上一动点.
    ①如图2,若k=1时,抛物线的对称轴DH交x轴于点H,直线AE交y轴于点M,直线BE交对称轴DH于点N,求MO+NH的值;
    ②如图3,若k=2时,点F在x轴上方的抛物线上运动,连接EF交x轴于点G,且满足ÐFBA=ÐEBA,当线段EF运动时,ÐFGO的度数大小发生变化吗?若不变,请求出tanÐFGO的值;若变化,请说明理由.

    8.已知开口向下的抛物线y=ax2-2ax+2与y轴的交点为A,顶点为B,对称轴与x轴的交点为C,点A与点D关于对称轴对称,直线BD与x轴交于点M,直线AB与直线OD交于点N.
    (1)求点D的坐标.
    (2)求点M的坐标(用含a的代数式表示).
    (3)当点N在第一象限,且∠OMB=∠ONA时,求a的值.

    9.如图,抛物线经过,两点.
    求抛物线的函数表达式;
    求抛物线的顶点坐标,直接写出当时,x的取值范围;
    设点M是抛物线的顶点,试判断抛物线上是否存在点H满足?若存在,请求出点H的坐标;若不存在,请说明理由.

    10.在平面直角坐标系中,直线y=﹣x+2与x轴交于点B,与y轴交于点C,二次函数y=﹣x2+bx+c的图象经过B,C两点,且与x轴的负半轴交于点A.
    (1)求二次函数的表达式;
    (2)如图1,点D是抛物线第四象限上的一动点,连接DC,DB,当S△DCB=S△ABC时,求点D坐标;
    (3)如图2,在(2)的条件下,点Q在CA的延长线上,连接DQ,AD,过点Q作QP∥y轴,交抛物线于P,若∠AQD=∠ACO+∠ADC,请求出PQ的长.

    11.如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、C两点,点A在点C的右边,与y轴交于点B,点B的坐标为(0,﹣3),且OB=OC,点D为该二次函数图象的顶点.
    (1)求这个二次函数的解析式及顶点D的坐标;
    (2)如图,若点P为该二次函数的对称轴上的一点,连接PC、PO,使得∠CPO=90°,请求出所有符合题意的点P的坐标;
    (3)在对称轴上是否存在一点P,使得∠OPC为钝角,若存在,请直接写出点P的纵坐标为yp的取值范围,若没有,请说明理由.

    12.如图,抛物线经过、两点,与轴交于另一点.
    求此抛物线的解析式;
    已知点在第四象限的抛物线上,求点关于直线对称的点的坐标.
    在的条件下,连接,问在轴上是否存在点,使?若存在,请求出点的坐标;若不存在,请说明理由.

    13.如图,已知点A(﹣1,0),B(3,0),C(0,1)在抛物线y=ax2+bx+c上.
    (1)求抛物线解析式;
    (2)在直线BC上方的抛物线上求一点P,使△PBC面积为1;
    (3)在x轴下方且在抛物线对称轴上,是否存在一点Q,使∠BQC=∠BAC?若存在,求出Q点坐标;若不存在,说明理由.

    14.如图,抛物线y=ax2+bx-4a经过A(-1,0)、C(0,4)两点,与x轴交于另一点B.

    (1)求抛物线的解析式;
    (2)已知点D(m,m+1)在第一象限的抛物线上,求点D关于直线BC对称的点的坐标;
    (3)在(2)的条件下,连接BD,点P为抛物线上一点,且∠DBP=45°,求点P的坐标.
    15.抛物线经过A(-1,0)、C(0,-3)两点,与x轴交于另一点B.
    (1)求此抛物线的解析式;
    (2)已知点D 在第四象限的抛物线上,求点D关于直线BC对称的点D’的坐标;
    (3)在(2)的条件下,连结BD,问在x轴上是否存在点P,使,若存在,请求出P点的坐标;若不存在,请说明理由.

    16.如图,抛物线y=ax2+bx﹣5(a≠0)与x轴交于点A(﹣5,0)和点B(3,0),与y轴交于点C.
    (1)求该抛物线的解析式;
    (2)若点E为x轴下方抛物线上的一动点,当S△ABE=S△ABC时,求点E的坐标;
    (3)在(2)的条件下,抛物线上是否存在点P,使∠BAP=∠CAE?若存在,求出点P的横坐标;若不存在,请说明理由.

    17.如图,抛物线与x轴交于点A、B(点A在点B的左侧)与y轴交于点C(0,8),点D是抛物线上的动点,直线AD与y轴交于点K.
    (1)填空:c=;
    (2)若点D的横坐标为2,连接OD、CD、AC,以AC为直径作⊙M,试判断点D与⊙M的位置关系,并说明理由.
    (3)在抛物线上是否存在点D,使得∠BAC=2∠BAD?若存在,试求出点D的坐标;若不存在,试说明理由.

    18.如图1,抛物线经过A(1,0),B(7,0),D(0,) 三点,以AB为边在x轴上方作等边三角形ABC.
    (1)求抛物线的解析式;
    (2)在抛物线x轴上方是否存在点M,使S△ABM =S△ABC,若存在,请求出点M坐标;若不存在,请说明理由;
    (3)如图2,E是线段AC上的动点,F是线段BC上的动点,AF与BE相交于点P.
    ①若CE=BF,试猜想AF与BE的数量关系,请说明理由,并求出∠APB的度数;
    ②若AF=BE,当点E由A运动到C时,试求点P经过的路径长.


    参考答案:
    1.(1)①;②(1,2)(答案不唯一);(2);(3).
    【解析】解:(1)①当a=−1,b=−2,k=2时,
    a+=−1+=−2,ka+b=2×(−1)−2=−4.
    ∴点P(−1,−2)的“2属派生点”P′的坐标为(−2,−4).
    故答案为(−2,−4).
    ②由题可得:

    ∴ka+b=3k=3.
    ∴k=1.
    ∴a+b=3.
    ∴b=3−a.
    当a=1时,b=2,此时点P的坐标为(1,2).
    故答案为(1,2)(答案不唯一).
    说明:只要点P的横坐标与纵坐标的和等于3即可.
    (2)∵点P在x轴的正半轴上,
    ∴b=0,a>0.
    ∴点P的坐标为(a,0),点P′的坐标为(a,ka).
    ∴PP′⊥OP.
    ∵△OPP′为等腰直角三角形,
    ∴OP=PP′.
    ∴a=±ka.
    ∵a>0,
    ∴k=±1.
    故答案为±1.
    (3)设点B的坐标为(m,n),
    ∵点A是点B的“属派生点”,
    ∴点A的坐标为(m+,m+n),
    ∵点A在函数(x 3 时,
    不能满足ÐFBA = ÐEBA ,
    当 n < 1,ÐFBA=ÐEBA,∴DFHB ∽ DENB,则,

    得: n + a = 2

    = 8 - 2(n + a) = 4
    综上可知:当点 F 和 E 在抛物线上运动时, tan ÐFGO 的值不会发生变化, 且tan ÐFGO = 4

    【点评】此题主要考查二次函数综合题,解题的关键是熟知二次函数的性质与相似三角形的判定与性质.
    8.(1)D(2,2);(2);(3)
    【分析】(1)令x=0求出A的坐标,根据顶点坐标公式或配方法求出顶点B的坐标、对称轴直线,根据点A与点D关于对称轴对称,确定D点坐标.
    (2)根据点B、D的坐标用待定系数法求出直线BD的解析式,令y=0,即可求得M点的坐标.
    (3)根据点A、B的坐标用待定系数法求出直线AB的解析式,求直线OD的解析式,进而求出交点N的坐标,得到ON的长.过A点作AE⊥OD,可证△AOE为等腰直角三角形,根据OA=2,可求得AE、OE的长,表示出EN的长.根据tan∠OMB=tan∠ONA,得到比例式,代入数值即可求得a的值.
    【解析】(1)当x=0时,,
    ∴A点的坐标为(0,2)

    ∴顶点B的坐标为:(1,2-a),对称轴为x= 1,
    ∵点A与点D关于对称轴对称
    ∴D点的坐标为:(2,2)
    (2)设直线BD的解析式为:y=kx+b
    把B(1,2-a)D(2,2)代入得:
    ,解得:
    ∴直线BD的解析式为:y=ax+2-2a
    当y=0时,ax+2-2a=0,解得:x=
    ∴M点的坐标为:
    (3)由D(2,2)可得:直线OD解析式为:y=x
    设直线AB的解析式为y=mx+n,代入A(0,2)B(1,2-a)可得:
    解得:
    ∴直线AB的解析式为y= -ax+2
    联立成方程组: ,解得:
    ∴N点的坐标为:()
    ON=()
    过A点作AE⊥OD于E点,则△AOE为等腰直角三角形.
    ∵OA=2
    ∴OE=AE=,EN=ON-OE=()-=)
    ∵M,C(1,0), B(1,2-a)
    ∴MC=,BE=2-a
    ∵∠OMB=∠ONA
    ∴tan∠OMB=tan∠ONA
    ∴,即
    解得:a=或
    ∵抛物线开口向下,故a

    相关试卷

    2023年中考数学高频考点突破——二次函数与面积 (含答案):

    这是一份2023年中考数学高频考点突破——二次函数与面积 (含答案),共56页。

    2023年中考数学高频考点突破——二次函数与面积:

    这是一份2023年中考数学高频考点突破——二次函数与面积,共58页。试卷主要包含了如图,已知抛物线与x轴交于A等内容,欢迎下载使用。

    2023年中考数学高频考点突破——二次函数与角度(含答案):

    这是一份2023年中考数学高频考点突破——二次函数与角度(含答案),共48页。试卷主要包含了如图,抛物线y=-0,如图1,点A为抛物线C1等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map