所属成套资源:2024届高三数学一轮复习基础夯实练(76份)
2024届高三数学一轮复习基础夯实练46:空间点、直线、平面之间的位置关系
展开
这是一份2024届高三数学一轮复习基础夯实练46:空间点、直线、平面之间的位置关系,共11页。试卷主要包含了若直线上有两个点在平面外,则,下列命题中不正确的是,AE,DF,8eq \r等内容,欢迎下载使用。
基础夯实练46 空间点、直线、平面之间的位置关系1.若直线上有两个点在平面外,则( )A.直线上至少有一个点在平面内B.直线上有无穷多个点在平面内C.直线上所有点都在平面外D.直线上至多有一个点在平面内2.(多选)下列命题中不正确的是( )A.空间四点共面,则其中必有三点共线B.空间四点不共面,则其中任意三点不共线C.空间四点中有三点共线,则此四点不共面D.空间四点中任意三点不共线,则此四点不共面3.已知平面α,β,γ两两垂直,直线a,b,c满足a⊂α,b⊂β,c⊂γ,则直线a,b,c不可能满足以下哪种关系( )A.两两垂直 B.两两平行C.两两相交 D.两两异面4.在底面半径为1的圆柱OO1中,过旋转轴OO1作圆柱的轴截面ABCD,其中母线AB=2,E是的中点,F是AB的中点,则( )A.AE=CF,AC与EF是共面直线B.AE≠CF,AC与EF是共面直线C.AE=CF,AC与EF是异面直线D.AE≠CF,AC与EF是异面直线5.如图,已知四面体ABCD 的各条棱长均等于4,E,F 分别是棱AD,BC 的中点.若用一个与直线EF 垂直,且与四面体的每一个面都相交的平面α 去截该四面体,由此得到一个多边形截面,则该多边形截面面积的最大值为( )A.3 B.4C.4 D.66.(2021·全国乙卷)在正方体ABCD-A1B1C1D1中,P为B1D1的中点,则直线PB与AD1所成的角为( )A. B. C. D.7.(2023·广州模拟)如图为四棱锥A-DEFG的侧面展开图(点G1,G2重合为点G),其中AD=AF,G1D=G2F.E是线段DF的中点,请写出四棱锥A-DEFG中一对一定相互垂直的异面直线________.(填上你认为正确的一个结论即可,不必考虑所有可能的情形)8. 如图是某机械零件的几何结构,该几何体是由两个相同的直四棱柱组合而成的,且前后、左右、上下均对称,每个四棱柱的底面都是边长为2的正方形,高为4,且两个四棱柱的侧棱互相垂直.则这两个四棱柱的表面相交的交线段总长度为________.9. 如图所示,在空间四边形ABCD中,E,F分别是AB,AD的中点,G,H分别在BC,CD上,且BG∶GC=DH∶HC=1∶2.(1)求证:E,F,G,H四点共面;(2)设EG与FH交于点P,求证:P,A,C三点共线. 10. 如图,在三棱锥P-ABC中,PA⊥底面ABC,D是PC的中点.已知∠BAC=,AB=2,AC=2,PA=2.求:(1)三棱锥P-ABC的体积;(2)异面直线BC与AD所成角的余弦值. 11.(多选)(2023·朝阳模拟)在三棱锥A-BCD中,AB=CD=,AD=BC=AC=BD=,则( )A.AB⊥CDB.三棱锥A-BCD的体积为C.三棱锥A-BCD外接球半径为D.异面直线AD与BC所成角的余弦值为12. 如图,E,F分别为正方体ABCD-A1B1C1D1的棱CC1,C1D1的中点,若AB=6,则过A,E,F三点的截面的面积为( )A.9B.18C.D.13.(2022·南阳模拟)如图,AB和CD是异面直线,AB=CD=3,E,F分别为线段AD,BC上的点,且==,EF=,则AB与CD所成角的大小为________.14.已知三棱锥P-ABC的四个顶点都在球O的表面上,PA⊥平面ABC,PA=6,AB=2,AC=2,BC=4,则:(1)球O的表面积为________;(2)若D是BC的中点,过点D作球O的截面,则截面面积的最小值是________.15.(2023·重庆模拟)如图,已知直三棱柱ABC-A1B1C1的侧棱长为2,AB⊥BC,AB=BC=2,过AB,BB1的中点E,F作平面α与平面AA1C1C垂直,则平面α与该直三棱柱所得截面的周长为 ________.16. 如图,在四棱锥P-ABCD中,PC⊥底面ABCD,ABCD是直角梯形,AD⊥DC,AB∥DC,AB=2AD=2CD=2,点E是PB的中点.(1)线段PA上是否存在一点G,使得点D,C,E,G共面?若存在,请证明,若不存在,请说明理由;(2)若PC=2,求三棱锥P-ACE的体积.
参考答案1.D 2.ACD 3.B 4.D5.B [将正四面体补成正方体如图所示,可得EF⊥平面CHBG,且正方体的棱长为2.由于EF⊥平面α,且平面α 与四面体的每一个面都相交,故截面为平行四边形MNKL,且KL+KN=4,又KL∥BC,KN∥AD,且AD⊥BC,∴KN⊥KL,∴ 平行四边形MNKL 为矩形,∴S矩形MNKL=KN·KL≤2=4,当且仅当KN=KL=2 时取等号.]6.D [方法一 如图,连接C1P,因为ABCD-A1B1C1D1是正方体,且P为B1D1的中点,所以C1P⊥B1D1,又C1P⊥BB1,所以C1P⊥平面B1BP.又BP⊂平面B1BP,所以C1P⊥BP.连接BC1,则AD1∥BC1,所以∠PBC1为直线PB与AD1所成的角.设正方体ABCD-A1B1C1D1的棱长为2,则在Rt△C1PB中,C1P=B1D1=,BC1=2,sin∠PBC1==,所以∠PBC1=.方法二 以B1为坐标原点,B1C1,B1A1,B1B所在的直线分别为x轴、y轴、z轴建立空间直角坐标系(图略),设正方体ABCD-A1B1C1D1的棱长为2,则B(0,0,2),P(1,1,0),D1(2,2,0),A(0,2,2),=(-1,-1,2),=(2,0,-2).设直线PB与AD1所成的角为θ,则cos θ===.因为θ∈,所以θ=.方法三 如图所示,连接BC1,A1B,A1P,PC1,则易知AD1∥BC1,所以直线PB与AD1所成的角等于直线PB与BC1所成的角.根据P为正方形A1B1C1D1的对角线B1D1的中点,易知A1,P,C1三点共线,且P为A1C1的中点.易知A1B=BC1=A1C1,所以△A1BC1为等边三角形,所以∠A1BC1=,又P为A1C1的中点,所以可得∠PBC1=∠A1BC1=.]7.AE,DF(或AE,DG或AE,GF或AG,DF)8.89.证明 (1)因为E,F分别为AB,AD的中点,所以EF∥BD.在△BCD中,==,所以GH∥BD,所以EF∥GH.所以E,F,G,H四点共面.(2)因为EG∩FH=P,P∈EG,EG⊂平面ABC,所以P∈平面ABC.同理P∈平面ADC.所以P为平面ABC与平面ADC的公共点.又平面ABC∩平面ADC=AC,所以P∈AC,所以P,A,C三点共线.10.解 (1)S△ABC=×2×2=2,三棱锥P-ABC的体积V=S△ABC·PA=×2×2=.(2)如图,取PB的中点E,连接DE,AE,则ED∥BC,所以∠ADE是异面直线BC与AD所成的角(或其补角).在△ADE中,DE=2,AE=,AD=2,cos∠ADE===.故异面直线BC与AD所成角的余弦值为.11.ABD [将三棱锥补形为长方体,如图所示.其中BE=BN=1,BF=2,所以AB=CD=,AD=BC=AC=BD=,连接MF,则AM∥BF,AM=BF,所以四边形AMFB为平行四边形,所以AB∥MF,又四边形MCFD为正方形,所以MF⊥CD,所以AB⊥CD,故A正确;长方体的体积V1=1×1×2=2,三棱锥E-ABC的体积V2=V三棱锥A-BEC=××1×2×1=,同理,三棱锥N-ABD,三棱锥F-BCD,三棱锥M-ACD的体积也为,所以三棱锥A-BCD的体积V=2-4×=,故B正确;长方体的外接球的直径为=,所以长方体的外接球的半径为,长方体的外接球也是三棱锥A-BCD的外接球,所以三棱锥A-BCD外接球的半径为,故C错误;连接MN,交AD于点O,因为MN∥BC,所以∠AOM(或其补角)为异面直线AD与BC所成的角,由已知OA=AD=,OM=MN=,AM=2,所以cos∠AOM==-,所以异面直线AD与BC所成角的余弦值为,故D正确.]12.C [连接EF,作直线EF分别与直线DC,DD1的延长线相交于点P,Q,连接AP交BC于点M,连接AQ交A1D1于点N,连接NF,ME.则五边形AMEFN即为过A,E,F三点的截面,如图所示.由题意知AP=AQ=3,PQ=9,∴S△APQ=,又ME∥AQ,且=,∴S△MPE=S△QNF=S△APQ,∴S五边形AMEFN=S△APQ=.]13.60°解析 在平面ABD中,过E作EG∥AB,交DB于点G,连接GF,如图,∵=,∴=,又=,∴=,则GF∥CD,∴∠EGF(或其补角)即为AB与CD所成角,在△EGF中,EG=AB=2,GF=CD=1,EF=,∴cos∠EGF==-,∴∠EGF=120°,∴AB与CD所成角的大小为60°.14.(1)52π (2)4π解析 (1)由题意,根据勾股定理可得AC⊥AB,则可将三棱锥P-ABC放入以AP,AC,AB为长方体的长,宽,高的长方体中,则体对角线为外接球直径,设外接球半径为r,即2r==2,则r=,所以球O的表面积为4πr2=4π×()2=52π.(2)由题意,得△ABC为直角三角形,所以D为底面ABC的外接圆圆心,当DO⊥截面时,截面面积最小,即截面为平面ABC的外接圆,半径为2,故截面面积的最小值为π×22=4π.15.3+解析 如图所示,取AC的中点D,连接BD,取A1C1的中点D1,连接B1D1,取AD的中点G,连接EG,连接EF,分别取C1D1,B1C1的中点M,N,连接MN,FN,GM,可得EG∥BD,BD∥B1D1,MN∥B1D1,即有EG∥MN,又由AB=BC,可得BD⊥AC,因为AA1⊥平面ABC,可得AA1⊥BD,又AC∩AA1=A,AC,AA1⊂平面AA1C1C,所以BD⊥平面AA1C1C,可得EG⊥平面AA1C1C,由面面垂直的判定定理,可得平面EGMNF⊥平面AA1C1C,则平面EGMNF即为平面α,由EG=BD=,GM==,MN=B1D1=,NF==,FE==,则所得截面的周长为×2++×2=3+.16.解 (1)存在.当G为PA的中点时满足条件.如图,连接GE,GD,则GE是△PAB的中位线,所以GE∥AB.又AB∥DC,所以GE∥DC,所以G,E,C,D四点共面.(2)因为E是PB的中点,所以VP-ACE=VB-ACE=VP-ACB.因为AD⊥DC,AB∥DC,所以AC=,CB=,故由题易知AC⊥BC,所以S△ABC=AC·BC=××=1,VP-ACB=PC·S△ABC=,所以VP-ACE=.
相关试卷
这是一份新高考数学一轮复习讲练测专题8.3空间点、直线、平面之间的位置关系(练)(含解析),共30页。试卷主要包含了【多选题】等内容,欢迎下载使用。
这是一份人教版高考数学一轮复习考点规范练35空间点、直线、平面之间的位置关系含答案,共4页。
这是一份2024届高三数学一轮复习基础夯实练53:直线的方程,共5页。试卷主要包含了已知直线l1,直线l,下列说法正确的有等内容,欢迎下载使用。