![数学(四)-2023年中考考前20天终极冲刺攻略第1页](http://www.enxinlong.com/img-preview/2/3/14357072/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![数学(四)-2023年中考考前20天终极冲刺攻略第2页](http://www.enxinlong.com/img-preview/2/3/14357072/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![数学(四)-2023年中考考前20天终极冲刺攻略第3页](http://www.enxinlong.com/img-preview/2/3/14357072/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
所属成套资源:2023年中考数学考前20天终极冲刺攻略
数学(四)-2023年中考考前20天终极冲刺攻略
展开
这是一份数学(四)-2023年中考考前20天终极冲刺攻略,共165页。试卷主要包含了从考查的内容来看,重点涉及的有,从考查的热点来看,主要涉及的有,平行四边形的定义,平行四边形的性质,平行四边形中的几个解题模型,矩形的性质,矩形的判定,菱形的性质等内容,欢迎下载使用。
目 录 contents
(四)
多边形与平行四边形……………………………………………………04
圆相关知识………………………………………………………………… 53
视图与投影…………………………………………………………………110
统计与概率…………………………………………………………………118
考前回练基础………………………………………………………………149
中考倒计时
5天
多边形与平行四边形
1.从考查的题型来看,主要以解答题的形式进行考查,少数以填空题或选择题的形式进行考查,属于中档题,难度一般.
2.从考查的内容来看,重点涉及的有:多边形的内外角和定理,平行四边形的性质与判定定理;多边形与平行四边形的应用.
3.从考查的热点来看,主要涉及的有:多边形的内外角和定理,平行四边形的性质与判定定理,多边形与平行四边形的实际综合应用.
1.多边形的相关概念
1)定义:在平面内,由一些段线首尾顺次相接组成的封闭图形叫做多边形.
2)对角线:从n边形的一个顶点可以引(n–3)条对角线,并且这些对角线把多边形分成了(n–2)个三角形;n边形对角线条数为.
2.多边形的内角和、外角和
1)内角和:n边形内角和公式为(n–2)·180°;2)外角和:任意多边形的外角和为360°.
3.正多边形
1)定义:各边相等,各角也相等的多边形.
2)正n边形的每个内角为,每一个外角为.
3)正n边形有n条对称轴.
4)对于正n边形,当n为奇数时,是轴对称图形;当n为偶数时,既是轴对称图形,又是中心对称图形.
4.平行四边形的定义:两组对边分别平行的四边形叫做平行四边形,平行四边形用“”表示.
5.平行四边形的性质
1)边:两组对边分别平行且相等.2)角:对角相等,邻角互补.3)对角线:互相平分.
4)对称性:中心对称但不是轴对称.
注意:利用平行四边形的性质解题时一些常用到的结论和方法:
1)平行四边形相邻两边之和等于周长的一半.
2)平行四边形中有相等的边、角和平行关系,所以经常需结合三角形全等来解题.
3)过平行四边形对称中心的任一直线等分平行四边形的面积及周长.
6.平行四边形中的几个解题模型
1)如图①,AE平分∠BAD,则可利用平行线的性质结合等角对等边得到△ABE为等腰三角形,即AB=BE.
2)平行四边形的一条对角线把其分为两个全等的三角形,如图②中△ABD≌△CDB;两条对角线把平行四边形分为两组全等的三角形,如图②中△AOD≌△COB,△AOB≌△COD;
根据平行四边形的中心对称性,可得经过对称中心O的线段与对角线所组成的居于中心对称位置的三角形全等,如图②△AOE≌△COF.图②中阴影部分的面积为平行四边形面积的一半.
3)如图③,已知点E为AD上一点,根据平行线间的距离处处相等,可得S△BEC=S△ABE+S△CDE.
4)如图④,根据平行四边形的面积的求法,可得AE·BC=AF·CD.
7、平行四边形的判定
1)方法一(定义法):两组对边分别平行的四边形是平行四边形.
2)方法二:两组对边分别相等的四边形是平行四边形.
3)方法三:有一组对边平行且相等的四边形是平行四边形.
4)方法四:对角线互相平分的四边形是平行四边形.
5)方法五:两组对角分别相等的四边形是平行四边形.
8.矩形的性质:
1)四个角都是直角;2)对角线相等且互相平分;3)面积=长×宽=2S△ABD=4S△AOB.(如图)
9.矩形的判定:
1)定义法:有一个角是直角的平行四边形;2)有三个角是直角;3)对角线相等的平行四边形.
10.菱形的性质:
1)四边相等;2)对角线互相垂直、平分,一条对角线平分一组对角;3)面积=底×高=对角线乘积的一半.
11.菱形的判定:
1)定义法:有一组邻边相等的平行四边形;2)对角线互相垂直的平行四边形;3)四条边都相等的四边形.
12.正方形的性质:
1)四条边都相等,四个角都是直角;2)对角线相等且互相垂直平分;3)面积=边长×边长=2S△ABD=4S△AOB.
13.正方形的判定:
1)定义法:有一个角是直角,且有一组邻边相等的平行四边形;2)一组邻边相等的矩形;
3)一个角是直角的菱形;4)对角线相等且互相垂直、平分.
14.特殊的平行四边形之间的联系
(1)两组对边分别平行;(2)相邻两边相等;(3)有一个角是直角;(4)有一个角是直角;
(5)相邻两边相等;(6)有一个角是直角,相邻两边相等;(7)四边相等;(8)有三个角都是直角.
15.中点四边形
1)任意四边形所得到的中点四边形一定是平行四边形.
2)对角线相等的四边形所得到的中点四边形是矩形.
3)对角线互相垂直的四边形所得到的中点四边形是菱形.
4)对角线互相垂直且相等的四边形所得到的中点四边形是正方形.
1.(2022•河北)依据所标数据,下列一定为平行四边形的是( )
A. B.
C. D.
【分析】根据平行四边形的判定定理做出判断即可.
【解答】解:A、80°+110°≠180°,故A选项不符合条件;
B、只有一组对边平行不能确定是平行四边形,故B选项不符合题意;
C、不能判断出任何一组对边是平行的,故C选项不符合题意;
D、有一组对边平行且相等的四边形是平行四边形,故D选项符合题意;
故选:D.
2.(2022•无锡)正八边形的每一个内角都是( )
A.120° B.135° C.140° D.150°
【分析】首先根据多边形内角和定理:(n﹣2)•180°(n≥3且n为正整数)求出内角和,然后再计算一个内角的度数.
【解答】解:正八边形的内角和为:(8﹣2)×180°=1080°,
每一个内角的度数为×1080°=135°.
故选:B.
3.(2022•内江)如图,在▱ABCD中,已知AB=12,AD=8,∠ABC的平分线BM交CD边于点M,则DM的长为( )
A.2 B.4 C.6 D.8
【分析】由平行四边形的得CD=AB=12,BC=AD=8,AB∥CD,再证∠CBM=∠CMB,则MC=BC=8,即可得出结论.
【解答】解:∵四边形ABCD是平行四边形,
∴CD=AB=12,BC=AD=8,AB∥CD,
∴∠ABM=∠CMB,
∵BM是∠ABC的平分线,
∴∠ABM=∠CBM,
∴∠CBM=∠CMB,
∴MC=BC=8,
∴DM=CD﹣MC=12﹣8=4,
故选:B.
4.(2022•襄阳)如图,▱ABCD的对角线AC和BD相交于点O,下列说法正确的是( )
A.若OB=OD,则▱ABCD是菱形 B.若AC=BD,则▱ABCD是菱形
C.若OA=OD,则▱ABCD是菱形 D.若AC⊥BD,则▱ABCD是菱形
【分析】由矩形的判定和菱形的判定分别对各个选项进行判断即可.
【解答】解:A、∵四边形ABCD是平行四边形,
∴OB=OD,故选项A不符合题意;
B、∵四边形ABCD是平行四边形,AC=BD,
∴▱ABCD是矩形,故选项B不符合题意;
C、∵四边形ABCD是平行四边形,
∴OA=OC=AC,OB=OD=BD,
∵OA=OD,
∴AC=BD,
∴▱ABCD是矩形,故选项C不符合题意;
D、∵四边形ABCD是平行四边形,AC⊥BD,
∴▱ABCD是菱形,故选项D符合题意;
故选:D.
5.(2022•淄博)如图,在边长为4的菱形ABCD中,E为AD边的中点,连接CE交对角线BD于点F.若∠DEF=∠DFE,则这个菱形的面积为( )
A.16 B.6 C.12 D.30
【分析】连接AC交BD于O,如图,根据菱形的性质得到AD∥BC,CB=CD=AD=4,AC⊥BD,BO=OD,OC=AO,再利用∠DEF=∠DFE得到DF=DE=2,证明∠BCF=∠BFC得到BF=BC=4,则BD=6,所以OB=OD=3,接着利用勾股定理计算出OC,从而得到AC=2,然后根据菱形的面积公式计算它的面积.
【解答】解:连接AC交BD于O,如图,
∵四边形ABCD为菱形,
∴AD∥BC,CB=CD=AD=4,AC⊥BD,BO=OD,OC=AO,
∵E为AD边的中点,
∴DE=2,
∵∠DEF=∠DFE,
∴DF=DE=2,
∵DE∥BC,
∴∠DEF=∠BCF,
∵∠DFE=∠BFC,
∴∠BCF=∠BFC,
∴BF=BC=4,
∴BD=BF+DF=4+2=6,
∴OB=OD=3,
在Rt△BOC中,OC==,
∴AC=2OC=2,
∴菱形ABCD的面积=AC•BD=×2×6=6.
故选:B.
6.(2022•安徽)两个矩形的位置如图所示,若∠1=α,则∠2=( )
A.α﹣90° B.α﹣45° C.180°﹣α D.270°﹣α
【分析】根据矩形的性质和三角形外角的性质,可以用含α的式子表示出∠2.
【解答】解:由图可得,
∠1=90°+∠3,
∵∠1=α,
∴∠3=α﹣90°,
∵∠3+∠2=90°,
∴∠2=90°﹣∠3=90°﹣(α﹣90°)=90°﹣α+90°=180°﹣α,
故选:C.
7.(2022•甘肃)大自然中有许多小动物都是“小数学家”,如图1,蜜蜂的蜂巢结构非常精巧、实用而且节省材料,多名学者通过观测研究发现:蜂巢巢房的横截面大都是正六边形.如图2,一个巢房的横截面为正六边形ABCDEF,若对角线AD的长约为8mm,则正六边形ABCDEF的边长为( )
A.2mm B.2mm C.2mm D.4mm
【分析】根据正六边形的性质和题目中的数据,可以求得正六边形ABCDEF的边长.
【解答】解:连接BE,CF,BE、CF交于点O,如右图所示,
∵六边形ABCDEF是正六边形,AD的长约为8mm,
∴∠AOF=60°,OA=OD=OF,OA和OD约为4mm,
∴AF约为4mm,
故选:D.
8.(2022•广州)如图,正方形ABCD的面积为3,点E在边CD上,且CE=1,∠ABE的平分线交AD于点F,点M,N分别是BE,BF的中点,则MN的长为( )
A. B. C.2﹣ D.
【分析】连接EF,由正方形ABCD的面积为3,CE=1,可得DE=﹣1,tan∠EBC===,即得∠EBC=30°,又AF平分∠ABE,可得∠ABF=∠ABE=30°,故AF==1,DF=AD﹣AF=﹣1,可知EF=DE=×(﹣1)=﹣,而M,N分别是BE,BF的中点,即得MN=EF=.
【解答】解:连接EF,如图:
∵正方形ABCD的面积为3,
∴AB=BC=CD=AD=,
∵CE=1,
∴DE=﹣1,tan∠EBC===,
∴∠EBC=30°,
∴∠ABE=∠ABC﹣∠EBC=60°,
∵AF平分∠ABE,
∴∠ABF=∠ABE=30°,
在Rt△ABF中,AF==1,
∴DF=AD﹣AF=﹣1,
∴DE=DF,△DEF是等腰直角三角形,
∴EF=DE=×(﹣1)=﹣,
∵M,N分别是BE,BF的中点,
∴MN是△BEF的中位线,
∴MN=EF=.
故选:D.
9.(2022•眉山)一个多边形外角和是内角和的,则这个多边形的边数为 11 .
【分析】多边形的内角和定理为(n﹣2)×180°,多边形的外角和为360°,根据题意列出方程求出n的值.
【解答】解:设这个多边形的边数为n,
根据题意可得:,
解得:n=11,
故答案为:11.
10.(2022•邵阳)已知矩形的一边长为6cm,一条对角线的长为10cm,则矩形的面积为 48 cm2.
【分析】利用勾股定理列式求出另一边长,然后根据矩形的面积公式列式进行计算即可得解.
【解答】解:∵长方形的一条对角线的长为10cm,一边长为6cm,
∴另一边长==8cm,
∴它的面积为8×6=48cm2.
故答案为:48.
11.(2022•甘肃)如图,在四边形ABCD中,AB∥DC,AD∥BC,在不添加任何辅助线的前提下,要想四边形ABCD成为一个矩形,只需添加的一个条件是 ∠A=90°(答案不唯一) .
【分析】先证四边形ABCD是平行四边形,再由矩形的判定即可得出结论.
【解答】解:需添加的一个条件是∠A=90°,理由如下:
∵AB∥DC,AD∥BC,
∴四边形ABCD是平行四边形,
又∵∠A=90°,
∴平行四边形ABCD是矩形,
故答案为:∠A=90°(答案不唯一).
12.(2022•广州)如图,在▱ABCD中,AD=10,对角线AC与BD相交于点O,AC+BD=22,则△BOC的周长为 21 .
【分析】根据平行四边形对角线互相平分,求出OC+OB的长,即可解决问题.
【解答】解:∵四边形ABCD是平行四边形,
∴AO=OC=AC,BO=OD=BD,AD=BC=10,
∵AC+BD=22,
∴OC+BO=11,
∴△BOC的周长=OC+OB+BC=11+10=21.
故答案为:21.
13.(2022•无锡)如图,正方形ABCD的边长为8,点E是CD的中点,HG垂直平分AE且分别交AE、BC于点H、G,则BG= 1 .
【分析】设CG=x,则BG=8﹣x,根据勾股定理可得AB2+BG2=CE2+CG2,可求得x的值,进而求出BG的长.
【解答】解:连接AG,EG,
∵E是CD的中点,
∴DE=CE=4,
设CG=x,则BG=8﹣x,
在Rt△ABG和Rt△GCE中,根据勾股定理,得
AB2+BG2=CE2+CG2,
即82+(8﹣x)2=42+x2,
解得x=7,
∴BG=BC﹣CG=8﹣7=1.
故答案是:1.
14.(2022•湘西州)如图,在矩形ABCD中,E为AB的中点,连接CE并延长,交DA的延长线于点F.
(1)求证:△AEF≌△BEC.
(2)若CD=4,∠F=30°,求CF的长.
【分析】(1)先根据矩形性质得出AD∥BC,然后证得∠F=∠BCE,再根据AAS即可证明:△AEF≌△BEC;
(2)根据矩形的性质得出∠D=90°,然后根据∠F=30°得出CF=2CD即可解答.
【解答】(1)证明:∵四边形ABCD是矩形,
∴AD∥BC,
∴∠F=∠BCE,
∵E是AB中点,
∴AE=EB,
∵∠AEF=∠BEC,
∴△AEF≌△BEC(AAS);
(2)解:∵四边形ABCD是矩形,
∴∠D=90°,
∵CD=4,∠F=30°,
∴CF=2CD=2×4=8,
即CF的长为8.
15.(2022•徐州)如图,在▱ABCD中,点E、F在对角线BD上,且BE=DF.
求证:(1)△ABE≌△CDF;
(2)四边形AECF是平行四边形.
【分析】(1)根据平行四边形的性质得到AB=CD,AB∥CD,根据平行线的性质得到∠ABD=∠CDB,利用SAS定理证明△ABE≌△CDF;
(2)根据全等三角形的性质得到AE=CF,∠AEB=∠CFD,根据平行线的判定定理证明AE∥CF,再根据平行四边形的判定定理证明结论.
【解答】证明:(1)∵四边形ABCD为平行四边形,
∴AB=CD,AB∥CD,
∴∠ABD=∠CDB,
在△ABE和△CDF中,
,
∴△ABE≌△CDF(SAS);
(2)由(1)可知,△ABE≌△CDF,
∴AE=CF,∠AEB=∠CFD,
∴180°﹣∠AEB=180°﹣∠CFD,即∠AEF=∠CFE,
∴AE∥CF,
∵AE=CF,AE∥CF,
∴四边形AECF是平行四边形.
16.(2022•广元)如图,在四边形ABCD中,AB∥CD,AC平分∠DAB,AB=2CD,E为AB中点,连结CE.
(1)求证:四边形AECD为菱形;
(2)若∠D=120°,DC=2,求△ABC的面积.
【分析】(1)由一组对边平行且相等的四边形是平行四边形,可证四边形AECD是平行四边形,由平行线的性质和角平分线的性质可证AD=CD,可得结论;
(2)由菱形的性质可求AE=BE=CE=2,由等边三角形的性质和直角三角形的性质可求BC,AC的长,即可求解.
【解答】(1)证明:∵E为AB中点,
∴AB=2AE=2BE,
∵AB=2CD,
∴CD=AE,
又∵AE∥CD,
∴四边形AECD是平行四边形,
∵AC平分∠DAB,
∴∠DAC=∠EAC,
∵AB∥CD,
∴∠DCA=∠CAB,
∴∠DCA=∠DAC,
∴AD=CD,
∴平行四边形AECD是菱形;
(2)∵四边形AECD是菱形,∠D=120°,
∴AD=CD=CE=AE=2,∠D=120°=∠AEC,
∴AE=CE=BE,∠CEB=60°,
∴∠CAE=30°=∠ACE,△CEB是等边三角形,
∴BE=BC=EC=2,∠B=60°,
∴∠ACB=90°,
∴AC=BC=2,
∴S△ABC=×AC×BC=×2×2=2.
17.(2022•淮安)在数学兴趣小组活动中,同学们对菱形的折叠问题进行了探究.如图(1),在菱形ABCD中,∠B为锐角,E为BC中点,连接DE,将菱形ABCD沿DE折叠,得到四边形A'B'ED,点A的对应点为点A',点B的对应点为点B'.
【观察发现】
A'D与B'E的位置关系是 A′D∥B′E ;
【思考表达】
(1)连接B'C,判断∠DEC与∠B'CE是否相等,并说明理由;
(2)如图(2),延长DC交A'B'于点G,连接EG,请探究∠DEG的度数,并说明理由;
【综合运用】
如图(3),当∠B=60°时,连接B'C,延长DC交A'B'于点G,连接EG,请写出B'C、EG、DG之间的数量关系,并说明理由.
【分析】【观察发现】利用翻折变换的性质判断即可.
【思考表达】(1)结论:∠DEC=∠B'CE.证明DE∥CB′即可;
(2)证明GC=GB′,推出EG⊥CB′,即可解决问题.
【综合运用】结论:DG2=EG2+B′C2.如图(3)中,延长DG交EB′的延长线于点T,过点D作DR⊥GA′交GA′的延长线于点R.想办法证明DE=CB′,可得结论.
【解答】解:【观察发现】如图(1)中,由翻折的性质可知,A′D∥B′E.
故答案为:A′D∥B′E;
【思考表达】(1)结论:∠DEC=∠B'CE.
理由:如图(2)中,连接BB′.
∵EB=EC=EB′,
∴∠BB′C=90°,
∴BB′⊥B′C,
由翻折变换的性质可知BB′⊥DE,
∴DE∥CB′,
∴∠DEC=∠B′CE;
(2)结论:∠DEG=90°.
理由:如图(2)中,连接DB,DB′,
由翻折的性质可知∠BDE=∠B′DE,
设∠BDE=∠B′DE=x,∠A=∠A′=y.
∵四边形ABCD是菱形,
∴∠ADB=∠CDB=∠B′DA′,
∴∠A′DG=∠BDB′=2x,
∴∠DGA′=180°﹣2x﹣y,
∵∠BEB′=∠EBD+∠EB′D+∠BDB′,
∴∠BEB′=180°﹣y+2x,
∵EC=EB′,
∴∠EB′C=∠ECB′=∠BEB′=90°﹣y+x,
∴∠GB′C=∠A′B′E﹣∠EB′C=180﹣y﹣(90°﹣y+x)=90°﹣y﹣x,
∴∠CGA′=2∠GB′C,
∵∠CGA′=∠GB′C+∠GCB′,
∴∠GB′C=∠GCB′,
∴GC=GB′,
∵EB′=EC,
∴EG⊥CB′,
∵DE∥CB′,
∴DE⊥EG,
∴∠DEG=90°;
【综合运用】结论:DG2=EG2+B′C2.
理由:如图(3)中,延长DG交EB′的延长线于点T,过点D作DR⊥GA′交GA′的延长线于点R.
设GC=GB′=x,CD=A′D=A′B′=2a,
∵∠B=60°,
∴∠A=∠DA′B′=120°,
∴∠DA′R=60°,
∴A′R=A′D•cos60°=a,DR=a,
在Rt△DGR中,则有(2a+x)2=(a)2+(3a﹣x)2,
∴x=a,
∴GB′=a,A′G=a,
∵TB′∥DA′,
∴=,
∴=,
∴TB′=a,
∵CB′∥DE,
∴===,
∴DE=CB′,
∵∠DEG=90°,
∴DG2=EG2+DE2,
∴DG2=EG2+B′C2.
18.(2022•黔西南州)如图,在正方形ABCD中,E,F分别是BC,CD边上的点(点E不与点B,C重合),且∠EAF=45°.
(1)当BE=DF时,求证:AE=AF;
(2)猜想BE,EF,DF三条线段之间存在的数量关系,并证明你的结论;
(3)连接AC,G是CB延长线上一点,GH⊥AE,垂足为K,交AC于点H且GH=AE.若DF=a,CH=b,请用含a,b的代数式表示EF的长.
【分析】(1)证明△ABE≌△ADF,从而得出结论;
(2)在CD的延长线上截取DG=BE,类比(1)可证得△ABE≌△ADG,进而证明△GAF≌△EAF,进一步得出结论;
(3)作HR⊥BC于R,证明△ABE≌△GRH,从而BE=HR,在Rt△CRH中可得出HR=b•sin45°=,进而BE=,根据(2)可得出结果.
【解答】(1)证明:∵四边形ABCD是正方形,
∴AB=AD,∠B=∠D=90°,
在△ABE和△ADF中,
,
∴△ABE≌△ADF(SAS),
∴AE=AF;
(2)解:如图1,
BE+DF=EF,理由如下:
在CD的延长线上截取DG=BE,
同理(1)可得:△ABE≌△ADG(SAS),
∴∠BAE=∠DAG,AG=AE,
∵四边形ABCD是正方形,
∴∠BAD=90°,
∵∠EAF=45°,
∴∠BAE+∠DAF=∠BAD﹣∠EAF=45°,
∴∠DAG+∠DAF=45°,
即:∠GAF=45°,
∴∠GAF=∠EAF,
在△GAF和△EAF中,
,
∴△GAF≌△EAF(SAS),
∴FG=EF,
∴DG+DF=EF,
∴BE+DF=EF;
(3)如图2,
作HR⊥BC于R,
∴∠HRG=90°,
∵四边形ABCD是正方形,
∴∠ABE=90°,∠ACB=∠ACD=45°,
∴∠ABE=∠HRG,∠BAE+∠AEB=90°,
∵GH⊥AE,
∴∠EKG=90°,
∴∠G+∠AEB=90°,
∴∠G=∠BAE,
在△ABE和△GRH中,
,
∴△ABE≌△GRH(AAS),
∴BE=HR,
在Rt△CRH中,∠ACB=45°,CH=b,
∴HR=b•sin45°=b,
∴BE=,
∴EF=BE+DF=.
1.(2023•南海区一模)正十边形的外角和是( )
A.144° B.180° C.360° D.1440°
2.(2023•雁塔区校级模拟)在四边形ABCD中,∠A+∠B=180°,添加下列条件,能使四边形ABCD成为平行四边形的是( )
A.AB=CD B.AD∥BC C.AD=BC D.∠C+∠D=180°
3.(2023•郑州一模)在下列条件中,能够判定平行四边形ABCD为矩形的是( )
A.AB=AD B.AC⊥BD C.AB=AC D.AC=BD
4.(2023•增城区一模)如图,菱形ABCD的对角线AC,BD相交于点O,点E为AD的中点,若OE=3,则菱形ABCD的边长是( )
A.5 B.6 C.7 D.8
5.(2023•沂水县一模)如图,直线l将正六边形ABCDEF分割成两个区域,且分别与AB、DE相交于P点、Q点.若∠APQ的外角为75°,则∠PQD的度数为( )
A.75° B.85° C.95° D.105°
6.(2023•惠山区校级模拟)如图,在正方形ABCD中,F是BC边上一点,连接AF,以AF为斜边作等腰直角△AEF.有下列四个结论:①∠CAF=∠DAE;②点E在线段BD上;③当∠AEC=135°时,CE平分∠ACD;④若点F在BC上以一定的速度由B向C运动,则点F的运动速度是点E运动速度的2倍.其中正确的结论的个数为( )
A.1 B.2 C.3 D.4
7.(2023•碑林区校级四模)若一个正多边形的内角和为1260°,则该正多边形一个外角的度数为 .
8.(2023•宝山区二模)如图,已知点E在矩形ABCD的边AD上,且BC=EC=8,∠ABE=15°,那么AB的长等于 .
9.(2023•铁东区一模)如图,在菱形ABCD中,对角线AC,BD分别为8和6,DE⊥AB,垂足为E,则DE的长为 .
10.(2023•合肥模拟)如图,点P在正方形ABCD内,∠BPC=135°,连接PA、PB、PC、PD.
(1)若PA=AB,则∠CPD= ;
(2)若PB=2,PC=3,则PD的长为 .
11.(2023•徐州模拟)已知:如图,E、F为平行四边形ABCD的对角线AC所在直线上的两点,且AE=CF.求证:
(1)BE=DF;
(2)四边形BFDE是平行四边形.
12.(2023•延庆区一模)如图,在平行四边形ABCD中,连接AC,∠BAC=90°.点M为边AD的中点,连接CM并延长,交BA的延长线于点E,连接DE.
(1)求证:四边形ACDE是矩形;
(2)若BE=10,DE=12,求四边形BCDE的面积.
13.(2023•芜湖模拟)如图,E为菱形ABCD边BC上一点,过点E作EG⊥AD于G,交BD于F,连接DE.过点D作DM⊥BD,交BC的延长线于点M.
(1)若∠A=4∠DEG,求证:∠M=2∠DEG;
(2)在(1)的条件下,若AB=5,BE=4,求EF的长.
14.(2023•未央区校级三模)如图,已知四边形ABCD为正方形,AB=,点E为对角线AC上一动点,连接DE,过点E作EF⊥DE.交射线BC于点F,以DE、EF为邻边作矩形DEFG,连接CG.
①求证:矩形DEFG是正方形;
②探究:CE+CG的值是否为定值?若是,请求出这个定值;若不是,请说明理由.
15.(2023•南海区一模)如图1,在矩形ABCD中,AD=12,AB=8,点E在射线AB上运动,将△AED沿ED翻折,使得点A与点G重合,连接AG交DE于点F.
(1)【初步探究】当点G落在BC边上时,求BG的长;
(2)【深入探究】在点E的运动过程中,BG是否存在最小值,如果存在,请求出最小值;如果不存在,请说明理由;
(3)【拓展延伸】如图3,点P为BG的中点,连接AP,点E在射线AB上运动过程中,求AP长的最大值.
16.(2023•福建模拟)已知正方形ABCD,在BC和CD边上各有一点E,F,且CE=CF,连接AF,EF,分别取AF,EF的中点M,N,连接DM,CN,MN.
(1)如图1,连接AE.
①求证:AE=AF.
②求∠DMN的度数.
(2)如图2,将△CEF绕点C旋转,当△CEF在正方形ABCD外部时,连接DN,试探究DN与MN的数量关系.
1.四边形的外角和等于( )
A.180° B.360° C.400° D.540°
2.如图,平行四边形ABCD中,∠A=100°,若∠ABD:∠DBC=3:2,则∠DBC的度数为何?( )
A.32 B.40 C.48 D.60
3.如图,在矩形ABCD中,对角线AC,BD相交于点O,点E,F分别是AO,AD的中点,连接EF,若AB=6cm,BC=8cm.则EF的长是( )
A.2.2cm B.2.3cm C.2.4cm D.2.5cm
4.如图,在菱形ABCD中,AC=8,BD=6,DE⊥AB,垂足为E,DE与AC交于点F,则sin∠DFC的值为( )
A. B. C. D.
5.平行四边形ABCD中,E点在BC上,P、Q两点在AD上,其位置如图所示.若PB与AE相交于R点,QB与AE相交于S点,则下列三角形面积的大小关系,何者正确?( )
A.△PBE>△QBE,△PRE>△QSE B.△PBE<△QBE,△PRE<△QSE
C.△PBE=△QBE,△PRE>△QSE D.△PBE=△QBE,△PRE<△QSE
6.如图,正方形ABCD的边长为a,点E在边AB上运动(不与点A,B重合),∠DAM=45°,点F在射线AM上,且AF=BE,CF与AD相交于点G,连接EC、EF、EG.则下列结论:
①∠ECF=45°;②△AEG的周长为(1+)a;③BE2+DG2=EG2;④△EAF的面积的最大值是a2;⑤当BE=a时,G是线段AD的中点.
其中正确的结论是( )
A.①②③ B.②④⑤ C.①③④ D.①④⑤
7.若一个多边形的内角和是外角和的两倍,则该多边形的边数是 .
8.如图,菱形ABCD中,∠ACD=40°,则∠ABC= °.
9.如图,在平行四边形ABCD中,BE平分∠ABC,CF⊥BE,连接AE,G是AB的中点,连接GF,若AE=4,则GF= .
10.如图,菱形ABCD的周长为16,AC,BD交于点O,点E在BC上,OE∥AB,则OE的长是 .
11.以▱ABCD对角线的交点O为原点,平行于BC边的直线为x轴,建立如图所示的平面直角坐标系.若A点坐标为(﹣2,1),则C点坐标为 .
12.如图,点P是正方形ABCD内位于对角线AC下方的一点,∠1=∠2,则∠BPC的度数为 °.
13.如图,过▱ABCD对角线AC与BD的交点E作两条互相垂直的直线,分别交边AB、BC、CD、DA于点P、M、Q、N.
(1)求证:△PBE≌△QDE;
(2)顺次连接点P,M,Q,N,求证:四边形PMQN是菱形.
14.如图,菱形ABCD的对角线AC,BD相交于点O,E是AD的中点,点F,G在AB上,EF⊥AB,OG∥EF.
(1)求证:四边形OEFG是矩形;
(2)若AD=10,EF=4,求OE和BG的长.
15.如图,E是正方形ABCD对角线BD上一点,连接AE,CE,并延长CE交AD于点F.
(1)求证:△ABE≌△CBE;
(2)若∠AEC=140°,求∠DFE的度数.
16.已知:如图①,将一块45°角的直角三角板DEF与正方形ABCD的一角重合,连接AF,CE,点M是CE的中点,连接DM.
(1)请你猜想AF与DM的数量关系是 .
(2)如图②,把正方形ABCD绕着点D顺时针旋转α角(0°<α<90°).
①AF与DM的数量关系是否仍成立,若成立,请证明;若不成立,请说明理由;(温馨提示:延长DM到点N,使MN=DM,连接CN)
②求证:AF⊥DM;
③若旋转角α=45°,且∠EDM=2∠MDC,求的值.(可不写过程,直接写出结果)
名校预测
1.【分析】根据任意多边形的外角和等于360°解答即可.
【解答】解:∵多边形的外角和等于360°,
∴正十边形的外角和是360°.
故选:C.
2.【分析】先证AD∥BC,再由平行四边形的判定分别对各个选项进行判断即可.
【解答】解:∵∠A+∠B=180°,
∴AD∥BC,
A、由AB=CD,AD∥BC,不能判定四边形ABCD为平行四边形,故选项A不符合题意;
B、由AD∥BC,不能判定四边形ABCD为平行四边形,故选项B不符合题意;
C、∵AD∥BC,AD=BC,
∴四边形ABCD为平行四边形,故选项C符合题意;
D、∵∠C+∠D=180°,
∴AD∥BC,
∴不能判定四边形ABCD为平行四边形,故选项D不符合题意;
故选:C.
3.【分析】由平行四边形的判定方法和矩形的判定方法,即可得出结论.
【解答】解:A、∵AB=AD,∴不能判定平行四边形ABCD为矩形,不符合题意;
B、∵AC⊥BD,∴不能判定平行四边形ABCD为矩形,不符合题意;
C、∵AB=AC,∴不能判定平行四边形ABCD为矩形,不符合题意;
D、∵AC=BD,∴平行四边形ABCD为矩形,符合题意;
故选:D.
4.【分析】根据菱形的性质得出对角线互相垂直,再利用直角三角形斜边中线等于斜边一半求出菱形边长.
【解答】解:∵四边形ABCD是菱形,
∴AC⊥BD,
∵点E为AD的中点,OE=3,
∴AD=2OE=6,
故选:B.
5.【分析】根据正六边形对边平行,得出∠EQP=75°,根据邻补角的定义即可求解.
【解答】解:∵四边形ABCDEF是正六边形,
∴AB∥DE,
∴∠EQP=∠1=75°,
∴∠PQD=180°﹣∠EQP=180°﹣75°=105°,
故选:D.
6.【分析】由正方形的性质及等腰直角三角形的性质得:∠FAE=∠DAC=45°,从而可判定①;由△CAF∽△DAE可得∠ADE=∠CDE=45°,由正方形的性质可证明△ADE≌△CDE,可得AE=CE,即有∠EAC=∠ECA,再由∠AEC=135°可得∠EAC=∠ECA=22.5°,从而CE、AE分别平分∠ACD、∠CAD,即可判定③;连接BD交AC于点O,由∠ADE=∠CDE=45°知,点E的运动轨迹为线段OD,而点F的运动轨迹为线段BC,即可判断②,由知,点F的运动速度是点E的运动速度的倍,即可判断④,因而可确定答案.
【解答】解:∵四边形ABCD是正方形,AC是对角线,
∴AD=CD,∠ADC=90°,∠DAC=∠DCA=∠ACB=45°,
∵△AEF是等腰直角三角形,
∴∠FAE=∠DAC=45°,
∵∠FAE=∠CAF+∠CAE=∠CAE+∠DAE=∠DAC=45°,
∴∠CAF=∠DAE,
故①正确;
∵△AEF、△DAC都是等腰直角三角形,
∴,,
∴,
∵∠CAF=∠DAE,
∴△CAF∽△DAE,
∴∠ADE=∠ACB=45°,即点E在线段BD上,
故②正确;
∵∠ADC=90°,
∴∠ADE=∠CDE=45°,
在△ADE和△CDE中,
,
∴△ADE≌△CDE(SAS),
∴AE=CE,
∴∠EAC=∠ECA,
∵∠AEC=135°,
∴,
∵∠DAC=∠DCA=45°=2∠EAC=2∠ECA,
∴CE、AE分别平分∠ACD、∠CAD,
故③正确;
如图,连接BD交AC于点O,
∵∠ADE=∠CDE=45°,
当点F与点B重合时,点E与点O重合;当点F与点C重合时,点E与点D重合,
∴点E的运动轨迹为线段OD,而点F的运动轨迹为线段BC,
∵,且点F与点E的运动时间相同,
∴,
故④错误;
故选:C.
7.【分析】n边形的内角和可以表示成(n﹣2)•180°,根据题意列方程,求出该正多边形的边数,再根据多边形的外角和为360°解答即可.
【解答】解:设该正多边形的边数为n,
根据题意列方程,得(n﹣2)•180°=1260°,
解得n=9.
∴该正多边形的边数是9,
∵多边形的外角和为360°,
360°÷9=40°,
∴该正多边形的一个外角为40°.
故答案为:40°.
8.【分析】作BF⊥EC于点F,由BC=EC,得∠CEB=∠CBE,由矩形的性质得AD∥BC,则∠AEB=∠CBE,所以∠AEB=∠CEB,则AB=FB,由∠ABC=90°,∠ABE=15°,得∠CEB=∠CBE=75°,则∠BCF=30°,所以AB=FB=BC=4,于是得到问题的答案.
【解答】解:作BF⊥EC于点F,则∠BFC=90°,
∵BC=EC=8,
∴∠CEB=∠CBE,
∵四边形ABCD是矩形,
∴AD∥BC,∠A=90°,
∴∠AEB=∠CBE,
∴∠AEB=∠CEB,
∵AB⊥EA,FB⊥EC,
∴AB=FB,
∵∠ABC=90°,∠ABE=15°,
∴∠CEB=∠CBE=∠ABC﹣∠ABE=90°﹣15°=75°,
∴∠BCF=180°﹣∠CEB﹣∠CBE=180°﹣75°﹣75°=30°,
∴AB=FB=BC=×8=4,
故答案为:4.
9.【分析】由菱形的性质可得AO=CO=4,DO=BO=3,AC⊥BD,由勾股定理可求AB的长,由菱形的面积公式可求解.
【解答】解:如图,设AC与BD的交点为O,
∵四边形ABCD是菱形,
∴AO=CO=4,DO=BO=3,AC⊥BD,
∴AB==5,
∵S菱形ABCD=AC•BD=AB•DE,
∴×8×6=5•DE,
∴DE=,
故答案为:.
10.【分析】(1)根据正方形的性质得到AD=AB,求得PA=AD,设∠APB=α,则∠BAP=180°﹣2a,根据周角的定义即可得到结论;(2)如图,过C作 CQ⊥CP,过P作PQ⊥PB,PQ与CQ相交于Q,连接BQ,推出△PCQ为等腰直角三角形,根据等腰直角三角形的性质得到,根据全等三角形的性质得到BQ=PD,根据勾股定理即可得到结论.
【解答】解:(1)∵四边形ABCD是正方形,
∴AD=AB,
∵PA=AB,
∴PA=AD,
设∠APB=α,则∠BAP=180°﹣2a,
∴∠PAD=2α﹣90°,∠APD==135°﹣α,
∵∠BPC=135°,
∴∠CPD=360°﹣(135°﹣α)﹣a﹣135°=90°;
故答案为:90°;
(2)如图,过C作CQ⊥CP,过P作PQ⊥PB,PQ与CQ相交于Q,连接BQ,
∵∠BPC=135°,
∴∠CPQ=45°,
∴△PCQ为等腰直角三角形,
∵PC=3,
∴,
∵CD=BC,∠PCD=∠QCB,PC=CQ,
∴△DCP≌△BCQ(SAS),
∴BQ=PD,
在Rt△PBQ中,PB2+PQ2=BQ2,
∵PB=2,
∴.
11.【分析】(1)证△BAE≌△DCF(SAS),即可得出结论;
(2)由全等三角形的性质得BE=DF,∠1AEB=∠CFD,再证BE∥DF,然后由平行四边形的判定即可得出结论.
【解答】证明:(1)∵四边形ABCD是平行四边形,
∴AB=CD,AB∥CD,
∴∠BAC=∠DCA,
∵∠BAE+∠BAC=180°,∠DCF+∠DCA=180°,
∴∠BAE=∠DCF,
在△BAE和△DCF中,
,
∴△BAE≌△DCF(SAS),
∴BE=DF;
(2)由(1)可知,△BAE≌△DCF,
∴BE=DF,∠AEB=∠CFD,
∴BE∥DF,
∴四边形BFDE是平行四边形.
12.【分析】(1)由平行四边形的性质得AB∥CD,则∠MAE=∠MDC,而MA=MD,即可证明△MAE≌△MDC,得ME=MC,则四边形ACDE是平行四边形,因为∠ACD=∠BAC=90°,所以四边形ACDE是矩形;
(2)由AE=CD,AB=CD,∠AED=90°,得DE⊥BE,AE=AB=CD=BE=5,则S四边形BCDE=×(5+10)×12=90.
【解答】(1)证明:∵四边形ABCD是平行四边形,
∴AB∥CD,
∴∠MAE=∠MDC,
∵点M为边AD的中点,
∴MA=MD,
在△MAE和△MDC中,
,
∴△MAE≌△MDC(ASA),
∴ME=MC,
∴四边形ACDE是平行四边形,
∵∠ACD=∠BAC=90°,
∴四边形ACDE是矩形.
(2)解:∵四边形ABCD是平行四边形,四边形ACDE是矩形,
∴AE=CD,AB=CD,∠AED=90°,
∴DE⊥BE,
∵BE=10,DE=12,
∴AE=AB=CD=BE=×10=5,
∵BE∥CD,
∴S四边形BCDE=×(5+10)×12=90,
∴四边形BCDE的面积是90.
13.【分析】(1)设∠DEG=α,则∠A=4α,由菱形的性质得到∠ABD=∠CBD=∠BDC=90°﹣2α,再证∠M=2α,即可得出结论;
(2)先证DM=EM=EC+CM=6,再由勾股定理得BD=8,然后证△FBE∽△MBD,得=,即可得出结论.
【解答】(1)证明:设∠DEG=α,则∠A=4α,
∵四边形ABCD是菱形,
∴AD∥BC,∠ABD=∠CBD,
∴∠ABC=180°﹣∠A=180°﹣4α,∠ABD=∠CBD=∠BDC,
∴∠ABD=∠CBD=∠BDC=90°﹣2α,
∵DM⊥BD,
∴∠BDM=90°,
∴∠M=90°﹣∠CBD=90°﹣(90°﹣2α)=2α,
∴∠M=2∠DEG;
(2)解:由(1)可知,∠CDM=90°﹣∠BDC=90°﹣(90°﹣2α)=2α,
∴∠M=∠CDM,
∴CD=CM=5,
∵EG⊥AD,
∴∠BEG=90°,
∴∠DEM=180°﹣∠BEG﹣∠DEG=180°﹣90°﹣α=90°﹣α,
∴∠EDM=180°﹣∠DEM﹣∠M=180°﹣(90°﹣α)﹣2α=90°﹣α,
∴∠DEM=∠EDM,
∴DM=EM=EC+CM=1+5=6,
∴BM=BC+CM=5+5=10,
∴BD===8,
∵∠BEF=∠BDM=90°,∠FBE=∠MBD,
∴△FBE∽△MBD,
∴=,
即=,
解得:EF=3,
即EF的长为3.
14.【分析】(1)作出辅助线,得到EN=EM,然后判断∠DEN=∠FEM,得到△DEN≌△FEM,则有DE=EF即可;
(2)同(1)的方法证出△ADE≌△CDG得到CG=AE,得出CE+CG=CE+AE=AC=4即可.
【解答】①证明:过E作EM⊥BC于M点,过E作EN⊥CD于N点,如图所示:
∵正方形ABCD
∴∠BCD=90°,∠ECN=45°
∴∠EMC=∠ENC=∠BCD=90°
且NE=NC,
∴四边形EMCN为正方形
∵四边形DEFG是矩形,
∴EM=EN,∠DEN+∠NEF=∠MEF+∠NEF=90°
∴∠DEN=∠MEF,
又∠DNE=∠FME=90°,
在△DEN和△FEM中,,
∴△DEN≌△FEM(ASA),
∴ED=EF,
∴矩形DEFG为正方形,
②解:CE+CG的值为定值,理由如下:
∵矩形DEFG为正方形,
∴DE=DG,∠EDC+∠CDG=90°
∵四边形ABCD是正方形,
∵AD=DC,∠ADE+∠EDC=90°
∴∠ADE=∠CDG,
在△ADE和△CDG中,,
∴△ADE≌△CDG(SAS),
∴AE=CG
∴AC=AE+CE=AB=×2=4,
∴CE+CG=4 是定值.
15.【分析】(1)由翻折得:DG=AD=12,根据勾股定理可得CG===4,再由BG=BC﹣CG,即可求得答案;
(2)以D为圆心,AD长为半径作⊙D,可得点G在⊙D上运动,当点G在线段BD上时,BG最小,此时,BG=BD﹣DG,由勾股定理可得BD=4,即可求得BG的最小值为4﹣12;
(3)以D为圆心,AD长为半径作⊙D,延长BA至H,使AH=BA=8,连接GH,根据三角形中位线定理可得AP=GH,则AP最大时,GH最大,由于点G在⊙D上运动,当HG经过点D时,GH最大,即可求得答案.
【解答】解:(1)当点G落在BC边上时,如图1,
∵四边形ABCD是矩形,
∴BC=AD=12,CD=AB=8,∠B=∠C=90°,
由翻折得:DG=AD=12,
在Rt△CDG中,CG===4,
∴BG=BC﹣CG=12﹣4;
(2)如图2,以D为圆心,AD长为半径作⊙D,
由翻折得:DG=AD=12,
∴点G在⊙D上运动,
当点G在线段BD上时,BG最小,此时,BG=BD﹣DG,
在Rt△ABD中,BD===4,
∴BG=BD﹣DG=4﹣12,
故在点E的运动过程中,BG存在最小值,BG的最小值为4﹣12;
(3)如图3,以D为圆心,AD长为半径作⊙D,延长BA至H,使AH=BA=8,连接GH,
∵AH=BA,
∴点A是BH的中点,
∵点P为BG的中点,
∴AP是△BGH的中位线,
∴AP=GH,
则AP最大时,GH最大,
由翻折得:DG=AD=12,
∴点G在⊙D上运动,
当HG经过点D时,GH最大,如图4,
在Rt△ADH中,HD===4,
∴GH=HD+DG=4+12,
∴AP=GH=2+6,
故点E在射线AB上运动过程中,AP长的最大值为2+6.
16.【分析】(1)①由正方形的性质得AB=AD=BC=DC,∠ABE=∠ADF=90°,因为CE=CF,所以BE=DF,即可证明△ABE≌△ADF,得AE=AF;
②由∠ADF=90°,M、N分别是AF=EF的中点,得DM=AM=FM,MN∥AE,则∠MDA=∠DAF=∠BAE,∠FMN=∠FAE,即可求得∠DMN=∠FMD+∠FMN=∠DAF+∠BAE+∠FAE=90°;
(2)连接AC、AE,则AE=2MN,由CE=CF,∠ECF=90°,点N是EF的中点,得CN⊥EF,CN=EN=FN,则∠CNE=90°,∠NCE=∠NEC=45°,由AD=CD,∠ADC=90°,得∠DCA=∠DAC=45°,则==sin45°=,∠DCN=∠ACE=45°+∠DCE,即可证明△DCN∽△ACE,得==,则=,所以DN=MN.
【解答】解:(1)①证明:∵四边形ABCD是正方形,
∴AB=AD=BC=DC,∠ABE=∠ADF=90°,
∵CE=CF,
∴BC﹣CE=DC﹣CF,
∴BE=DF,
在△ABE和△ADF中,
,
∴△ABE≌△ADF(SAS),
∴AE=AF.
②∵∠ADF=90°,M、N分别是AF=EF的中点,
∴DM=AM=FM=AF,MN∥AE,
∴∠MDA=∠DAF,∠FMN=∠FAE,
∵△ABE≌△ADF,
∴∠BAE=∠DAF,
∴∠MDA=∠BAE,
∴∠FMD=∠DAF+∠MDA=∠DAF+∠BAE,
∴∠DMN=∠FMD+∠FMN=∠DAF+∠BAE+∠FAE=∠DAB=90°.
(2)DN=MN,理由如下:
如图2,连接AC、AE,
∵M、N分别是AF、EF的中点,
∴AE=2MN,
∵CE=CF,∠ECF=90°,
∴CN⊥EF,CN=EN=FN=EF,
∴∠CNE=90°,
∴∠NCE=∠NEC=45°,
∵AD=CD,∠ADC=90°,
∴∠DCA=∠DAC=45°,
∴==sin45°=,
∵∠DCN=∠ACE=45°+∠DCE,
∴△DCN∽△ACE,
∴==,
∴=,
∴DN=MN.
专家押题
1.【分析】多边形的外角和都等于360°,所以四边形的外角和为360°.
【解答】解:∵多边形外角和等于360°,
∴四边形的外角和等于360°.
故选:B.
2.【分析】首先根据平行四边形的性质求得∠ABC的度数,然后根据∠ABD:∠DBC=3:2求得答案即可.
【解答】解:∵四边形ABCD是平行四边形,
∴AD∥BC,
∴∠A+∠ABC=180°,
∵∠A=100°,
∴∠ABC=180°﹣∠A=180°﹣100°=80°,
∵∠ABD:∠DBC=3:2,
∴∠DBC=80°×=32°,
故选:A.
3.【分析】根据矩形性质得出∠ABC=90°,BD=AC,BO=OD,根据勾股定理求出AC,进而求出BD、OD,最后根据三角形中位线求出EF的长即可.
【解答】解:∵四边形ABCD是矩形,
∴∠ABC=90°,BD=AC,BO=OD,
∵AB=6cm,BC=8cm,
∴由勾股定理得:AC===10(cm),
∴BD=10cm,DO=5cm,
∵点E、F分别是AO、AD的中点,
∴EF是△AOD的中位线,
∴EF=OD=2.5cm,
故选:D.
4.【分析】Rt△ABO中,sin∠ABO==,而∠ABO=∠AFE=∠DFC,即可求解.
【解答】解:设AC与BD相交于O,
∵四边形ABCD是菱形,AC=8,BD=6,AD=AB,
∴AC⊥OD,AO=AC=4,DO=BO=BD=3,
由勾股定理得到:AD=AB==5,
在Rt△ABO中,sin∠ABO==,
∵∠EAF+∠AFE=90°,∠FAE+∠ABO=90°,
∴∠ABO=∠AFE=∠DFC,
∴sin∠DFC=,
故选:D.
5.【分析】根据平行线之间的距离处处相等,可得△PBE、△QBE有同底和相等的高,即可得△PBE的面积=△QBE的面积;由图可得△BRE的面积>△BSE的面积,可得△PRE的面积<△QSE的面积.即可判断.
【解答】解:①△PBE、△QBE如图所示:
两个三角形有相同的底BE,
∵四边形ABCD是平行四边形,
∴AD∥BC,
∵平行线之间的距离处处相等,
∴△PBE、△QBE有相等的高,
∴△PBE的面积=△QBE的面积;
②∵△PBE的面积=△QBE的面积,
∴△PRE的面积+△BRE的面积=△QSE的面积+△BSE的面积,
由图可知:△BRE的面积>△BSE的面积,
∴△PRE的面积<△QSE的面积.
故选:D.
6.【分析】①正确.如图1中,在BC上截取BH=BE,连接EH.证明△FAE≌△EHC(SAS)即可解决问题.
②③错误.如图2中,延长AD到H,使得DH=BE,则△CBE≌△CDH(SAS),再证明△GCE≌△GCH(SAS)即可解决问题.
④正确.设BE=x,则AE=a﹣x,AF=x,构建二次函数,利用二次函数的性质解决最值问题.
⑤正确.当BE=a时,设DG=x,则EG=x+a,利用勾股定理构建方程可得x=即可解决问题.
【解答】解:如图1中,在BC上截取BH=BE,连接EH.
∵BE=BH,∠EBH=90°,
∴EH=BE,
∵AF=BE,
∴AF=EH,
∵∠DAM=∠EHB=45°,∠BAD=90°,
∴∠FAE=∠EHC=135°,
∵BA=BC,BE=BH,
∴AE=HC,
∴△FAE≌△EHC(SAS),
∴EF=EC,∠AEF=∠ECB,
∵∠ECH+∠CEB=90°,
∴∠AEF+∠CEB=90°,
∴∠FEC=90°,
∴∠ECF=∠EFC=45°,故①正确,
如图2中,延长AD到H,使得DH=BE,则△CBE≌△CDH(SAS),
∴∠ECB=∠DCH,
∴∠ECH=∠BCD=90°,
∴∠ECG=∠GCH=45°,
∵CG=CG,CE=CH,
∴△GCE≌△GCH(SAS),
∴EG=GH,
∵GH=DG+DH,DH=BE,
∴EG=BE+DG,故③错误,
∴△AEG的周长=AE+EG+AG=AE+AH=AD+DH+AE=AE+EB+AD=AB+AD=2a,故②错误,
设BE=x,则AE=a﹣x,AF=x,
∴S△AEF=•(a﹣x)×x=﹣x2+ax=﹣(x2﹣ax+a2﹣a2)=﹣(x﹣a)2+a2,
∵﹣<0,
∴x=a时,△AEF的面积的最大值为a2.故④正确,
当BE=a时,设DG=x,则EG=x+a,
在Rt△AEG中,则有(x+a)2=(a﹣x)2+(a)2,
解得x=,
∴AG=GD,故⑤正确,
故选:D.
7.【分析】任何多边形的外角和是360°,内角和等于外角和的2倍则内角和是720°.n边形的内角和是(n﹣2)•180°,如果已知多边形的内角和,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.
【解答】解:设该多边形的边数为n,
根据题意,得,(n﹣2)•180°=720°,
解得:n=6.
故这个多边形的边数为6.
故答案为:6
8.【分析】由菱形的性质得出AB∥CD,∠BCD=2∠ACD=80°,则∠ABC+∠BCD=180°,即可得出答案.
【解答】解:∵四边形ABCD是菱形,
∴AB∥CD,∠BCD=2∠ACD=80°,
∴∠ABC+∠BCD=180°,
∴∠ABC=180°﹣80°=100°;
故答案为:100.
9.【分析】根据平行四边形的性质结合角平分线的定义可求解∠CBE=∠BEC,即可得CB=CE,利用等腰三角形的性质可得BF=EF,进而可得GF是△ABE的中位线,根据三角形的中位线的性质可求解.
【解答】解:在平行四边形ABCD中,AB∥CD,
∴∠ABE=∠BEC.
∵BE平分∠ABC,
∴∠ABE=∠CBE,
∴∠CBE=∠BEC,
∴CB=CE.
∵CF⊥BE,
∴BF=EF.
∵G是AB的中点,
∴GF是△ABE的中位线,
∴GF=AE,
∵AE=4,
∴GF=2.
故答案为2.
10.【分析】由菱形的性质得出AB=4,再由三角形中位线定理即可得出OE的长.
【解答】解:∵菱形ABCD的周长为16,
∴AB=BC=CD=AD=4,OA=OC,
∵OE∥AB,
∴OE是△ABC的中位线,
∴OE=AB=2,
故答案为:2.
11.【分析】根据平行四边形是中心对称图形,再根据▱ABCD对角线的交点O为原点和点A的坐标,即可得到点C的坐标.
【解答】解:方法一:∵▱ABCD对角线的交点O为原点,
∴▱ABCD的A点和C点关于点O中心对称,
∵A点坐标为(﹣2,1),
∴点C的坐标为(2,﹣1),
故答案为:(2,﹣1).
方法二:∵四边形ABCD为平行四边形,
∴点A和C关于对角线的交点O对称,
又∵O为原点,
∴点A和C关于原点对称,
∵点A(﹣2,1),
∴点C的坐标为(2,﹣1),
故答案为:(2,﹣1).
12.【分析】由正方形的性质可得∠ACB=∠BAC=45°,可得∠2+∠BCP=45°=∠1+∠BCP,由三角形内角和定理可求解.
【解答】解:∵四边形ABCD是正方形,
∴∠ACB=∠BAC=45°,
∴∠2+∠BCP=45°,
∵∠1=∠2,
∴∠1+∠BCP=45°,
∵∠BPC=180°﹣∠1﹣∠BCP,
∴∠BPC=135°,
故答案为:135.
13.【分析】(1)由ASA证△PBE≌△QDE即可;
(2)由全等三角形的性质得出EP=EQ,同理△BME≌△DNE(ASA),得出EM=EN,证出四边形PMQN是平行四边形,再由对角线PQ⊥MN,即可得出结论.
【解答】证明:(1)∵四边形ABCD是平行四边形,
∴EB=ED,AB∥CD,
∴∠EBP=∠EDQ,
在△PBE和△QDE中,
,
∴△PBE≌△QDE(ASA);
(2)如图所示:
由(1)得:△PBE≌△QDE,
∴EP=EQ,
同理:△BME≌△DNE(ASA),
∴EM=EN,
∴四边形PMQN是平行四边形,
∵PQ⊥MN,
∴平行四边形PMQN是菱形.
14.【分析】(1)根据菱形的性质得出OB=OD,再由点E是AD的中点,所以,AE=DE,进而判断出OE是三角形ABD的中位线,得到AE=OE=AD,推出OE∥FG,求得四边形OEFG是平行四边形,根据矩形的判定定理即可得到结论;
(2)根据菱形的性质得到BD⊥AC,AB=AD=10,得到OE=AE=AD=5;由(1)知,四边形OEFG是矩形,求得FG=OE=5,根据勾股定理得到AF==3,于是得到结论.
【解答】解:(1)∵四边形ABCD是菱形,
∴OB=OD,
∵E是AD的中点,
∴OE是△ABD的中位线,
∴OE∥FG,
∵OG∥EF,
∴四边形OEFG是平行四边形,
∵EF⊥AB,
∴∠EFG=90°,
∴平行四边形OEFG是矩形;
(2)∵四边形ABCD是菱形,
∴BD⊥AC,AB=AD=10,
∴∠AOD=90°,
∵E是AD的中点,
∴OE=AE=AD=5;
由(1)知,四边形OEFG是矩形,
∴FG=OE=5,
∵AE=5,EF=4,
∴AF==3,
∴BG=AB﹣AF﹣FG=10﹣3﹣5=2.
15.【分析】(1)由“SAS”可证△ABE≌△CBE;
(2)由全等三角形的性质可求∠CEB=70°,由三角形的外角的性质可求解.
【解答】(1)证明:∵四边形ABCD是正方形,
∴AB=CB,∠ABC=∠ADC=90°,,
在△ABE和△CBE中,
,
∴△ABE≌△CBE(SAS);
(2)∵△ABE≌△CBE,
∴∠AEB=∠CEB,
又∵∠AEC=140°,
∴∠CEB=70°,
∵∠DEC+∠CEB=180°,
∴∠DEC=180°﹣∠CEB=110°,
∵∠DFE+∠ADB=∠DEC,
∴∠DFE=∠DEC﹣∠ADB=110°﹣45°=65°.
16.【分析】(1)根据题意合理猜想即可;
(2)①延长DM到点N,使MN=DM,连接CN,先证明△MNC≌△MDE,再证明△ADF≌△DCN,得到AF=DN,故可得到AF=2DM;
②根据全等三角形的性质和直角的换算即可求解;
③依题意可得∠AFD=∠EDM=30°,可设AG=k,得到DG,AD,FG,ED的长,故可求解.
【解答】解:(1)猜想AF与DM的数量关系是AF=2DM,
理由:∵四边形ABCD是正方形,
∴CD=AD,∠ADC=90°,
在△ADF和△CDE中,
,
∴△ADF≌△CDE(SAS),
∴AF=CE,
∵M是CE的中点,
∴CE=2DM,
∴AF=2DM,
故答案为:AF=2DM;
(2)①AF=2DM仍然成立,
理由如下:延长DM到点N,使MN=DM,连接CN,
∵M是CE中点,
∴CM=EM,
又∠CMN=∠EMD,
∴△MNC≌△MDE(SAS),
∴CN=DE=DF,∠MNC=∠MDE,
∴CN∥DE,
又AD∥BC
∴∠NCB=∠EDA,
∵四边形ABCD是正方形,
∴AD=DC,∠BCD=90°=∠EDF,
∴∠ADF=∠DCN,
∴△ADF≌△DCN(SAS),
∴AF=DN,
∴AF=2DM;
②∵△ADF≌△DCN,
∴∠NDC=∠FAD,
∵∠CDA=90°,
∴∠NDC+∠NDA=90°,
∴∠FAD+∠NDA=90°,
∴AF⊥DM;
③∵α=45°,
∴∠EDC=90°﹣45°=45°
∵∠EDM=2∠MDC,
∴∠EDM=∠EDC=30°,
∴∠AFD=30°,
过A点作AG⊥FD的延长线于G点,∴∠ADG=90°﹣45°=45°,
∴△ADG是等腰直角三角形,
设AG=k,则DG=k,AD=AG÷sin45°=k,
FG=AG÷tan30°=k,
∴FD=ED=k﹣k,
故=.
中考倒计时
04天
圆相关知识
1.从考查的题型来看,填空题、选择题、解答题三种形式都有所考查,多数题目较难,属于中、高档题。
2.从考查的内容来看,主要涉及的有:圆的有关性质(垂径定理、圆周角定理及推论),圆的有关位置关系(直线与圆的位置关系,切线长定理,切线的性质与判定定理),圆的有关计算(弧长与扇形面积,圆锥的侧面积)。
3.从考查的热点来看,主要涉及的有:圆的有关性质(垂径定理、圆周角定理及推论);圆的有关位置关系(直线与圆的位置关系,切线长定理,切线的性质与判定定理),圆的有关计算(弧长与扇形面积,圆锥的侧面积),阴影部分的面积。
一、圆的有关概念
1.与圆有关的概念和性质
1)圆:平面上到定点的距离等于定长的所有点组成的图形.
2)弦与直径:连接圆上任意两点的线段叫做弦,过圆心的弦叫做直径,直径是圆内最长的弦.
3)弧:圆上任意两点间的部分叫做弧,小于半圆的弧叫做劣弧,大于半圆的弧叫做优弧.
4)圆心角:顶点在圆心的角叫做圆心角.
5)圆周角:顶点在圆上,并且两边都与圆还有一个交点的角叫做圆周角.
6)弦心距:圆心到弦的距离.
2.注意
1)经过圆心的直线是该圆的对称轴,故圆的对称轴有无数条;
2)3点确定一个圆,经过1点或2点的圆有无数个.
3)任意三角形的三个顶点确定一个圆,即该三角形的外接圆.
二、垂径定理及其推论
1.垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.
关于垂径定理的计算常与勾股定理相结合,解题时往往需要添加辅助线,一般过圆心作弦的垂线,构造直角三角形.
2.推论
1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;
2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧.
三、圆心角、弧、弦的关系
1.定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等.圆心角、弧和弦之间的等量关系必须在同圆等式中才成立.
2.推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.
四、圆周角定理及其推论
1.定理:一条弧所对的圆周角等于它所对的圆心角的一半.
2.推论:1)在同圆或等圆中,同弧或等弧所对的圆周角相等. 2)直径所对的圆周角是直角.
圆内接四边形的对角互补.在圆中求角度时,通常需要通过一些圆的性质进行转化.比如圆心角与圆周角间的转化;同弧或等弧的圆周角间的转化;连直径,得到直角三角形,通过两锐角互余进行转化等.
五、与圆有关的位置关系
1.点与圆的位置关系
设点到圆心的距离为d.(1)dr⇔点在⊙O外.
判断点与圆之间的位置关系,将该点的圆心距与半径作比较即可.
2.直线和圆的位置关系
位置关系
相离
相切
相交
图形
公共点个数
0个
1个
2个
数量关系
d>r
d=r
d
相关试卷
这是一份数学(二)-2023年中考考前20天终极冲刺攻略,共191页。
这是一份数学(一)-2023年中考考前20天终极冲刺攻略,共108页。试卷主要包含了绝对值,实数的分类,科学记数法,近似数,平方根,立方根,数的乘方等内容,欢迎下载使用。
这是一份数学(四)-2023年中考考前20天终极冲刺攻略,共164页。试卷主要包含了从考查的内容来看,重点涉及的有,从考查的热点来看,主要涉及的有,平行四边形的定义,平行四边形的性质,平行四边形中的几个解题模型,矩形的性质,矩形的判定,菱形的性质等内容,欢迎下载使用。
![英语朗读宝](http://www.enxinlong.com/img/images/c2c32c447602804dcbaa70980ee6b1a1.jpg)