所属成套资源:初升高暑假预科数学讲义课件
高中数学初高衔接教材精编版——第3讲 一元二次方程
展开这是一份高中数学初高衔接教材精编版——第3讲 一元二次方程,共7页。试卷主要包含了一元二次方程的根的判断式,一元二次方程的根解法,一元二次方程的根与系数的关系等内容,欢迎下载使用。
第三讲 一元二次方程根与系数的关系
现行初中数学教材主要要求学生掌握一元二次方程的概念、解法及应用,而一元二次方程的根的判断式及根与系数的关系,在高中教材中的二次函数、不等式及解析几何等章节有着许多应用.本节将对一元二次方程根的判别式、根与系数的关系进行阐述.
一、一元二次方程的根的判断式
一元二次方程,用配方法将其变形为:
(1) 当时,右端是正数.因此,方程有两个不相等的实数根:
(2) 当时,右端是零.因此,方程有两个相等的实数根:
(3) 当时,右端是负数.因此,方程没有实数根.
由于可以用的取值情况来判定一元二次方程的根的情况.因此,把叫做一元二次方程的根的判别式,表示为:
【例1】不解方程,判断下列方程的实数根的个数:
(1) (2) (3)
解:(1) ,∴ 原方程有两个不相等的实数根.
(2) 原方程可化为:
,∴ 原方程有两个相等的实数根.
(3) 原方程可化为:
,∴ 原方程没有实数根.
说明:在求判断式时,务必先把方程变形为一元二次方程的一般形式.
练:说出下列各方程的根的情况
(1) (2) (3)
【例2】已知关于的一元二次方程,根据下列条件,分别求出的范围:
(1) 方程有两个不相等的实数根; (2) 方程有两个相等的实数根
(3)方程有实数根; (4) 方程无实数根.
解:
(1) ; (2) ;
(3) ; (4) .
二、一元二次方程的根解法
进一步地,在一元二次方程有实数根的前提下,该实数根具体是多?这就涉及到一元二次方程的根的求法
解法一(因式分解法)若可分解为,
那么由可得从而得到或
【典例】解一元二次方程
解:原方程可化为 故
练:解一元二次方程(1) (2) (3)
解法二(配方法)一元二次方程,用配方法将其变形为:
两边开方即可得到方程的根
【典例】解一元二次方程
解:原方程可化为 即
故 从而 即
练:解一元二次方程(1) (2) (3)
解法三(公式法)对于一元二次方程,
(1) 当时,右端是正数.因此,方程有两个不相等的实数根:
(2) 当时,右端是零.因此,方程有两个相等的实数根:
【典例】解一元二次方程
解:由所以原方程有两个不相等的实数根
所以即
练:解一元二次方程(1) (2) (3)
三、一元二次方程的根与系数的关系
一元二次方程的两个根为:
所以:,
定理:如果一元二次方程的两个根为,那么:
说明:一元二次方程根与系数的关系由十六世纪的法国数学家韦达发现,所以通常把此定理称为”韦达定理”.上述定理成立的前提是.
【例3】若是方程的两个根,试求下列各式的值:
(1) ; (2) ; (3) ; (4) .
分析:本题若直接用求根公式求出方程的两根,再代入求值,将会出现复杂的计算.这里,可以利用韦达定理来解答.
解:由题意,根据根与系数的关系得:
(1)
(2)
(3)
(4)
说明:利用根与系数的关系求值,要熟练掌握以下等式变形:
,,,
,,
等等.韦达定理体现了整体思想.
练:若是方程的两个根,试求下列各式的值
(1) (2) (3) ;
(3) ; (4) ; (5)
A 组
1.一元二次方程有两个不相等的实数根,则的取值范围是( )
A. B. C. D.
2.若是方程的两个根,则的值为( )
A. B. C. D.
3.已知菱形ABCD的边长为5,两条对角线交于O点,且OA、OB的长分别是关于的方程的根,则等于( )
A. B. C. D.
4.若是一元二次方程的根,则判别式和完全平方式的关系是( )
A. B. C. D.大小关系不能确定
5.若实数,且满足,则代数式的值为( )
A. B. C. D.
6.如果方程的两根相等,则之间的关系是 ______
7.已知一个直角三角形的两条直角边的长恰是方程的两个根,则这个直角三角形的斜边长是 _______ .
8.若方程的两根之差为1,则的值是 _____ .
9.设是方程的两实根,是关于的方程的两实根,则= _____ ,= _____ .
10.已知实数满足,则= _____ ,= _____ ,= _____ .
11.对于二次三项式,小明得出如下结论:无论取什么实数,其值都不可能等于10.您是否同意他的看法?请您说明理由.
12.若,关于的方程有两个相等的的正实数根,求的值.
13.已知关于的一元二次方程.
(1) 求证:不论为任何实数,方程总有两个不相等的实数根;
(2) 若方程的两根为,且满足,求的值.
14.已知关于的方程的两根是一个矩形两边的长.
(1) 取何值时,方程存在两个正实数根?
(2) 当矩形的对角线长是时,求的值.
B 组
1.已知关于的方程有两个不相等的实数根.
(1) 求的取值范围;
(2) 是否存在实数,使方程的两实根互为相反数?如果存在,求出的值;如果不存在,请您说明理由.
2.已知关于的方程的两个实数根的平方和等于11.求证:关于的方程有实数根.
3.若是关于的方程的两个实数根,且都大于1.
(1) 求实数的取值范围;
(2) 若,求的值.
第三讲 一元二次方程根与系数的关系习题答案
A组
1. B 2. A 3.A 4.A 5.A
6.
7. 3 8. 9或 9.
10. 11.正确 12.4
13.
14.
B组
1. (2) 不存在
2. (1)当时,方程为,有实根;(2) 当时,也有实根.
3.(1) ; (2) .
相关试卷
这是一份高中数学初高衔接教材精编版——第6讲 简单的二元二次方程组,共6页。试卷主要包含了由两个二元二次方程组成的方程组等内容,欢迎下载使用。
这是一份高中数学初高衔接教材精编版——第7讲 分式方程和无理方程的解法,共6页。试卷主要包含了可化为一元二次方程的分式方程,可化为一元二次方程的无理方程等内容,欢迎下载使用。
这是一份高中数学初高衔接教材精编版——第4讲 不等式的解法,共7页。试卷主要包含了一元二次不等式及其解法,简单分式不等式的解法,含有字母系数的一元二次不等式等内容,欢迎下载使用。