所属成套资源:【期末满分攻略】2022-2023学年北师大版七年级数学下册专题讲学案+模拟卷(原卷版+解析版)
- 【期末满分攻略】2022-2023学年北师大版七年级数学下册讲学案-专题11 三角形常见模型(热考模型)(原卷版+解析版) 学案 12 次下载
- 【期末满分攻略】2022-2023学年北师大版七年级数学下册讲学案-专题12 全等三角形基本模型(4大模型)(原卷版+解析版) 学案 12 次下载
- 【期末满分攻略】2022-2023学年北师大版七年级数学下册讲学案-专题14 倍长中线法与截长补短法构造全等三角形(原卷版+解析版) 学案 13 次下载
- 【期末满分攻略】2022-2023学年北师大版七年级数学下册讲学案-专题15 “一线三等角”模型及其变形的应用(原卷版+解析版) 学案 11 次下载
- 【期末满分攻略】2022-2023学年北师大版七年级数学下册讲学案-专题16 全等三角形中手拉手模型综合应用(原卷版+解析版) 学案 11 次下载
【期末满分攻略】2022-2023学年北师大版七年级数学下册讲学案-专题13 全等三角形重难点模型(五大模型)(原卷版+解析版)
展开
这是一份【期末满分攻略】2022-2023学年北师大版七年级数学下册讲学案-专题13 全等三角形重难点模型(五大模型)(原卷版+解析版),文件包含期末满分攻略2022-2023学年北师大版七年级数学下册讲学案-专题13全等三角形重难点模型五大模型解析版docx、期末满分攻略2022-2023学年北师大版七年级数学下册讲学案-专题13全等三角形重难点模型五大模型原卷版docx等2份学案配套教学资源,其中学案共83页, 欢迎下载使用。
专题13 全等三角形重难点模型(五大模型)
模型归纳
模型一:一线三等角型
模型二:手拉手模型
模型三:半角模型
模型四:对角互补模型
模型五:平行+线段中点构造全等模型
【典例分析】
【模型一:一线三等角型】
如图一,∠D=∠BCA=∠E=90°,BC=AC。 结论:Rt△BDC≌Rt△CEA
模型二 一线三等角全等模型
如图二,∠D=∠BCA=∠E,BC=AC。 结论:△BEC≌△CDA
图一 图二
应用:①通过证明全等实现边角关系的转化,便于解决对应的几何问题;
②与函数综合应用中有利于点的坐标的求解。
【典例1】如图,平面直角坐标系中有点A(﹣1,0)和y轴上一动点B(0,a),其中a>0,以B点为直角顶点在第二象限内作等腰直角△ABC,设点C的坐标为(c,d).
(1)当a=2时,则C点的坐标为 ;
(2)动点B在运动的过程中,试判断c+d的值是否发生变化?若不变,请求出其值;若发生变化,请说明理由.
【变式1】点A的坐标为(4,0),点B为y轴负半轴上的一个动点,分别以OB、AB为直角边在第三象限和第四象限作等腰Rt△OBC和等腰Rt△ABD.
(1)如图一,若点B坐标为(0,﹣3),连接AC、OD.
①求证:AC=OD;
②求D点坐标.
(2)如图二,连接CD,与y轴交于点E,试求BE长度.
【典例2】(1)猜想:如图1,已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.试猜想DE、BD、CE有怎样的数量关系,请直接写出;
(2)探究:如果三个角不是直角,那结论是否会成立呢?如图2,将(1)中的条件改为:在△ABC中,AB=AC,D,A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α(其中α为任意锐角或钝角)如果成立,请你给出证明;若不成立,请说明理由;
(3)解决问题:如图3,F是角平分线上的一点,且△ABF和△ACF均为等边三角形,D、E分别是直线m上A点左右两侧的动点,D、E、A互不重合,在运动过程中线段DE的长度始终为n,连接BD、CE,若∠BDA=∠AEC=∠BAC,试判断△DEF的形状,并说明理由.
【变式2】已知,在△ABC中,AB=AC,D,A,E三点都在直线m上,且DE=9cm,∠BDA=∠AEC=∠BAC
(1)如图①,若AB⊥AC,则BD与AE的数量关系为 ,CE与AD的数量关系为 ;
(2)如图②,判断并说明线段BD,CE与 DE的数量关系;
(3)如图③,若只保持∠BDA=∠AEC,BD=EF=7cm,点A在线段DE上以2cm/s的速度由点D向点E运动,同时,点C在线段EF上以xcm/s的速度由点E向点F运动,它们运动的时间为t(s).是否存在x,使得△ABD与△EAC全等?若存在,求出相应的t的值;若不存在,请说明理由.
【模型二:手拉手模型】
应用:①利用手拉手模型证明三角形全等,便于解决对应的几何问题;
②作辅助线构造手拉手模型,难度比较大。
【类型一:等边三角形中的手拉手模型】
【典例3】阅读与理解:如图1,等边△BDE按如图所示方式设置.
操作与证明:
(1)操作:固定等边△ABC,将△BDE绕点B按逆时针方向旋转120°,连接AD,CE,如图2;在图2中,请直接写出线段CE与AD之间具有怎样的大小关系.
(2)操作:若将图1中的△BDE,绕点B按逆时针方向旋转任意一个角度α(60°<α<180°),连接AD,CE,AD与CE相交于点M,连BM,如图3;在图3中线段CE与AD之间具有怎样的大小关系?∠EMD的度数是多少?证明你的结论.
猜想与发现:
(3)根据上面的操作过程,请你猜想在旋转过程中,∠DMB的度数大小是否会随着变化而变化?请证明你的结论.
【变式3-1】如图,△ABC和△DCE都是等边三角形,且B,C,D三点在一条直线上,连接AD,BE相交于点P.
(1)求证:BE=AD.
(2)求∠APB的度数.
【变式3-2】(1)问题发现:如图①,△ABC和△EDC都是等边三角形,点B、D、E在同一条直线上,连接AE.
①∠AEC的度数为 ;
②线段AE、BD之间的数量关系为 ;
(2)拓展探究:如图②,△ABC和△EDC都是等腰直角三角形、∠ACB=∠DCE=90°,点B、D、E在同一条直线上,CM为△EDC中DE边上的高,连接AE,试求∠AEB的度数及判断线段CM、AE、BM之间的数量关系,并说明理由;
(3)解决问题:如图③,△ABC和△EDC都是等腰三角形,∠ACB=∠DCE=36°,点B、D,E在同一条直线上,请直接写出∠EAB+∠ECB的度数.
【类型二:等腰三角形的手拉手模型】
【典例4】在△ABC中,AB=AC,点D是直线BC上一点(不与B、C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.
(1)如图1,当点D在线段BC上时,∠BAC=90°,
①求证:BD=CE;
②∠BCE= ;
(2)设∠BCE=a,∠BAC=β,
①如图2,当点D在线段BC上移动,求证α+β=180°;
②当点D在射线BC的反向延长线上移动,则a、β之间有怎样的数量关系?请直接写出你的结论.
【变式4-1】如图,△ABC和△ADE都是等腰直角三角形,CE与BD相交于点M,BD交AC于点N.
证明:(1)BD=CE;(2)BD⊥CE.
【变式4-2】如图,在△ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点,连接AD,以AD为直角边作等腰直角三角形ADF.
(1)如图1,若当点D在线段BC上时(不与点B、C重合),证明:△ACF≌△ABD;
(2)如图2,当点D在线段BC的延长线上时,试猜想CF与BD的数量关系和位置关系,并说明理由.
【类型三:直角三角形中的手拉手模型】
【典例5】△ABC与△BDE均为等腰直角三角形,∠ABC=∠DBE=90°.
(1)如图1,当D,B,C在同一直线时,CE的延长线与AD交于点F.求证:∠CFA=90°;
(2)当△ABC与△BDE的位置如图2时,CE的延长线与AD交于点F,猜想∠CFA的大小并证明你的结论;
(3)如图3,当A,E,D在同一直线时(A,D在点E的异侧),CE与AB交于点G,∠BAD=∠ACE,求证:BG+AB=AC.
【变式5-1】如图:已知△ABC中,∠BAC=90°,AB=AC,点D为直线BC上的一动点(点D不与点B、C重合),以AD为边作△ADE,使∠DAE=90°,AD=AE,连接CE.
发现问题:
如图1,当点D在边BC上时,
(1)请写出BD和CE之间的位置关系为 BD⊥CE ,并猜想BC和CE、CD之间的数量关系: .
(2)如图2,当点D在边BC的延长线上且其他条件不变时,(1)中BD和CE之间的位置关系;BC和CE、CD之间的数量关系是否成立?若成立,请证明;若不成立,请写出新的数量关系,说明理由;
【类型四:作辅助线构造手拉手模型】
【典例6】在△ABC中,AB=AC,∠ABC=α,点D是直线BC上一点,点C关于射线AD的对称点为点E.作直线BE交射线AD于点F.连接CF.
(1)如图1,点D在线段BC上,补全图形,求∠AFB的大小(用含α的代数式表示);
(2)如果∠α=60°,
①如图2,当点D在线段BC上时,用等式表示线段AF,BF,CF之间的数量关系,并证明;
②如图3,当点D在线段CB的延长线上时,直接写出线段AF、BF、CF之间的数量关系.
【变式6】如图1,已知△ABC是等边三角形,点D是BC边上一点.
(1)以AD为边构造等边△ADE(其中点D、E在直线AC两侧),连接CE,猜想CE与AB的位置关系,并证明你的结论;
(2)若过点C作CM∥AB,在CM上取一点F,连AF、DF,使得AF=DF,试猜想△ADF的形状,并证明你的结论.
【模型三:半角模型】等角=要三角形中得半角模型
【典例7】旋转变换是解决数学问题中一种重要的思想方法,通过旋转变换可以将分散的条件集中到一起,从而方便解决问题.已知,△ABC中,AB=AC,∠BAC=α,点D、E在边BC上,且.
(1)如图a,当α=60°时,将△AEC绕点A顺时针旋转60°到△AFB的位置,连结DF.
①∠DAF= ;②求证:DF=DE;
(2)如图b,当α=90°时,猜想BD、DE、CE的数量关系,并说明理由.
【变式7】已知∠MBN=60°,等边△BEF与∠MBN顶点B重合,将等边△BEF绕顶点B顺时针旋转,边EF所在直线与∠MBN的BN边相交于点C,并在BM边上截取AB=BC,连接AE.
(1)将等边△BEF旋转至如图①所示位置时,求证:CE=BE+AE;
(2)将等边△BEF顺时针旋转至如图②、图③位置时,请分别直接写出AE,BE,CE之间的数量关系,不需要证明;
(3)在(1)和(2)的条件下,若BF=4,AE=1,则CE= .
【典例8】等边△ABC,D为△ABC外一点,∠BDC=120°,BD=DC,∠MDN=60°,射线DM与直线AB相交于点M,射线DN与直线AC相交于点N,
①当点M、N在边AB、AC上,且DM=DN时,直接写出BM、NC、MN之间的数量关系.
②当点M、N在边AB、AC上,且DM≠DN时,猜想①中的结论还成立吗?若成立,请证明.
③当点M、N在边AB、CA的延长线上时,请画出图形,并写出BM、NC、MN之间的数量关系.
【模型四:对角互补模型】
应用:通过做垂线或者利用旋转构造全等三角形解决问题。
【典例9】(1)如图(1),在△ABC中,D是BC边上的中点,DE⊥DF,DE交AB于点E,DF交AC于点F,连接EF.若∠A=90°,探索线段BE、CF、EF之间的数量关系,并加以证明;
(2)如图(2),在四边形ABDC中,∠B+∠C=180°,DB=DC,∠BDC=120°,以D为顶点作一个60°角,角的两边分别交AB、AC于E、F两点,连接EF,探索线段BE、CF、EF之间的数量关系,并加以证明.
【变式9】(1)阅读理解:
如图①,在△ABC中,若AB=5,AC=3,求BC边上的中线AD的取值范围.
解决此问题可以用如下方法:
延长AD到点E使DE=AD,再连接BE,这样就把AB,AC,2AD集中在△ABE中,利用三角形三边的关系可判断线段AE的取值范围是 ;则中线AD的取值范围是 ;
(2)问题解决:
如图②,在△ABC中,D是BC边的中点,DE⊥DF于点D,DE交AB于点E,DF交AC于点F,连接EF,此时:BE+CF EF(填“>”或“=”或“<”);
(3)问题拓展:
如图③,在四边形ABCD中,∠B+∠D=180,CB=CD,∠BCD=140°,以C为顶点作∠ECF=70°,边CE,CF分别交AB,AD于E,F两点,连接EF,此时:BE+DF EF(填“>”或“=”或“<“);
(4)若在图③的四边形ABCD中,∠ECF=α(0°<α<90°),∠B+∠D=180,CB=CD,且(3)中的结论仍然成立,则∠BCD= (用含α的代数式表示).
【典例10】(1)如图1,四边形ABCD是边长为5 cm的正方形,E,F分别在AD,CD边上,∠EBF=45°.为了求出△DEF的周长.小南同学的探究方法是:
如图2,延长EA到H,使AH=CF,连接BH,先证△ABH≌△CBF,再证△EBH≌△EBF,得EF=EH,从而得到△DEF的周长= cm;
(2)如图3,在四边形ABCD中,AB=AD,∠BAD=100°,∠B=∠ADC=90°.E,F分别是线段BC,CD上的点.且∠EAF=50°.探究图中线段EF,BE,FD之间的数量关系;
(3)如图4,若在四边形ABCD中,AB=AD,∠B+∠D=180°,E,F分别是线段BC,CD上的点,且2∠EAF=∠BAD,(2)中的结论是否仍然成立,若成立,请证明,若不成立,请说明理由;
(4)若在四边形ABCD中,AB=AD,∠B+∠D=180°,点E、F分别在CB、DC的延长线上,且2∠EAF=∠BAD,请画出图形,并直接写出线段EF、BE、FD之间的数量关系.
【变式10-1】如图,在四边形ABCD中,AB=AD,∠B+∠D=180°,E,F分别是边BC,CD上的点,且∠EAF=∠BAD,求证:EF=BE+FD.
【变式10-2】“截长补短法”证明线段的和差问题:
先阅读背景材料,猜想结论并填空,然后做问题探究.
背景材料:
(1)如图1:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,E,F分别是BC,CD上的点,且∠EAF=60°.探究图中线段BE,EF,FD之间的数量关系.探究的方法是,延长FD到点G.使DG=BE,连接AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出的结论是 .
探索问题:
(2)如图2,若四边形ABCD中,AB=AD,∠B+∠D=180°,E,F分别是BC,CD上的点,且∠EAF=∠BAD,上述结论是否仍然成立?成立的话,请写出推理过程.
【模型五:平行+线段中点构造全等模型】
【结论】如图,AB∥CD,点E、F分别在直线AB、CD上,点O为EF中点,则△POE≌△QOF
口诀:有中点,有平行,轻轻延长就能行
【典例11】已知:AD是△ABC的角平分线,点E为直线BC上一点,BD=DE,过点E作EF∥AB交直线AC于点F,当点F在边AC的延长线上时,如图①易证AF+EF=AB;当点F在边AC上,如图②;当点F在边AC的延长线上,AD是△ABC的外角平分线时,如图③.写出AF、EF与AB的数量关系,并对图②进行证明.
【变式11-1】如图,四边形ABDC中,∠D=∠ABD=90°,点O为BD的中点,且OA⊥OC.
(1)求证:CO平分∠ACD;
(2)求证:AB+CD=AC.
【变式11-2】如图,已知AB=12,AB⊥BC于B,AB⊥AD于A,AD=5,BC=10.点E是CD的中点,求证AD和BC的关系。
【夯实基础】
1.如图,在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,若DE=10,BD=3,求CE的长.
2.如图,把一块直角三角尺ABC的直角顶点C放置在水平直线MN上,在△ABC中,∠C=90°,AC=BC,试回答下列问题:
(1)若把三角尺ABC绕着点C按顺时针方向旋转,当AB∥MN时,
∠2= 度;
(2)在三角尺ABC绕着点C按顺时针方向旋转过程中,分别作AM⊥MN于M,BN⊥MN与N,若AM=6,BN=2,求MN.
(3)三角尺ABC绕着点C按顺时针方向继续旋转到图3的位置,其他条件不变,则AM、BN与MN之间有什么关系?请说明理由.
3.如图,△ABC和△DEC都是等边三角形,D是BC延长线上一点,AD与BE相交于点P,AC、BE相交于点M,AD、CE相交于点N.
求证:
(1)AD=BE;
(2)∠BMC=∠ANC;
(3)△CMN是等边三角形.
4.已知:如图,△ABC、△CDE都是等边三角形,AD、BE相交于点O,点M、N分别是线段AD、BE的中点.
(1)求∠DOE的度数;
(2)求证:△MNC是等边三角形.
5.如图,△ABC为等边三角形,AE=CD,AD,BE相交于点P,BQ⊥AD于点Q,PQ=3,PE=1.
(1)求证:∠ABE=∠CAD;
(2)求BP和AD的长.
6.如图,△ABC是等边三角形,D是边BC上一点(点D不与点B,C重合),作∠EDF=60°,使角的两边分别交边AB,AC于点E,F,且BD=CF.
(1)如图①,若DE⊥BC,则∠DFC= 度;
(2)如图②,D是边BC上一点(点D不与点B,C重合),求证:BE=CD;
(3)如图③,若D是边BC的中点,且AB=2,则四边形AEDF的周长为 .
7.如图1,在△ABC中,∠ABC=∠ACB=60°,△BDC是等腰三角形且BD=CD,∠BDC=120°,以D为顶点作∠MDN=60°,交边AB,AC于M,N两点,延长AC到点E,使得CE=BM,连接MN、DE.
(1)试说明:①△MBD≌△ECD;②MN=BM+NC;
(2)如图2,若点M是AB的延长线的一点,N是CA的延长线上的点,点E在线段AC上,其他条件不变,探究线段BM,MN,NC之间的关系,并说明理由.
8.阅读理解:
课外兴趣小组活动时,老师提出了如下问题:
如图1,△ABC中,若AB=5,AC=3,求BC边上的中线AD的取值范围.
小明在组内经过合作交流,得到了如下的解决方法:延长AD到E,使得DE=AD,再连接BE(或将△ACD绕点D逆时针旋转180°得到△EBD),把AB、AC、2AD集中在△ABE中,利用三角形的三边关系可得2<AE<8,则1<AD<4.
感悟:解题时,条件中若出现“中点”“中线”字样,可以考虑构造以中点为对称中心的中心对称图形,把分散的已知条件和所求证的结论集中到同一个三角形中.
(1)问题解决:
受到(1)的启发,请你证明下面命题:如图2,在△ABC中,D是BC边上的中点,DE⊥DF,DE交AB于点E,DF交AC于点F,连接EF.
①求证:BE+CF>EF;
②若∠A=90°,探索线段BE、CF、EF之间的等量关系,并加以证明;
(2)问题拓展:
如图3,在四边形ABDC中,∠B+∠C=180°,DB=DC,∠BDC=120°,以D为顶点作一个60°角,角的两边分别交AB、AC于E、F两点,连接EF,探索线段BE、CF、EF之间的数量关系,并加以证明.
9.通过类比联想,引申拓展研究典型题目,可达到解一题知一类的目的,下面是一个案例,请补充完整.
原题:如图1,点E、F分别在正方形ABCD的边DC、BC上,∠EAF=45°,连接EF,试猜想EF、BF、DE之间的数量关系.
(1)思路梳理
把△ADE绕点A顺时针旋转90°至△ABG,可使AD与AB重合,由∠ABG=∠D=90°,得∠FBG=180°,即点F、B、G共线,易证△AFG≌ ,故EF、BF、DE之间的数量关系为 .
(2)类比引申
如图②,在四边形ABCD中,AB=AD,∠ABC=∠ADC=90°.E、F分别是DC、BC上的点.且∠EAF=∠BAD.猜想图中线段BF、EF、DE之间的数量关系 .
(3)拓展提高
如图③,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E、F分别是BC、CD上的点,且∠EAF=∠BAD,探究上述结论是否仍然成立?说明理由.
10.如图,梯形ABCD中,AD∥BC,E是CD的中点,AE平分∠BAD,AE⊥BE.
(1)求证:BE平分∠ABC;
(2)求证:AD+BC=AB;
(3)若S△ABE=4,求梯形ABCD的面积.
11.如图,在梯形ABCD中,AD∥BC,E是AB的中点.
(1)求证:S△CED=S△ADE+S△BCE.
(2)当CE=DE时,判断BC与CD的位置关系,并说明理由.
相关学案
这是一份【期末满分攻略】2022-2023学年北师大版七年级数学下册讲学案-专题12 全等三角形基本模型(4大模型)(原卷版+解析版),文件包含期末满分攻略2022-2023学年北师大版七年级数学下册讲学案-专题12全等三角形基本模型4大模型解析版docx、期末满分攻略2022-2023学年北师大版七年级数学下册讲学案-专题12全等三角形基本模型4大模型原卷版docx等2份学案配套教学资源,其中学案共30页, 欢迎下载使用。
这是一份【期末满分攻略】2022-2023学年北师大版七年级数学下册讲学案-专题09 平行线模型-“骨折”和“抬头”模型(原卷版+解析版),文件包含期末满分攻略2022-2023学年北师大版七年级数学下册讲学案-专题09平行线模型-“骨折”和“抬头”模型解析版docx、期末满分攻略2022-2023学年北师大版七年级数学下册讲学案-专题09平行线模型-“骨折”和“抬头”模型原卷版docx等2份学案配套教学资源,其中学案共29页, 欢迎下载使用。
这是一份【期末满分攻略】2022-2023学年北师大版七年级数学下册讲学案-专题08 平行线模型-“铅笔”模型(原卷版+解析版),文件包含期末满分攻略2022-2023学年北师大版七年级数学下册讲学案-专题08平行线模型-“铅笔”模型解析版docx、期末满分攻略2022-2023学年北师大版七年级数学下册讲学案-专题08平行线模型-“铅笔”模型原卷版docx等2份学案配套教学资源,其中学案共35页, 欢迎下载使用。