|学案下载
终身会员
搜索
    上传资料 赚现金
    【期末满分攻略】2022-2023学年浙教版七年级数学下册讲学案-专题03 平行线模型-“骨折”和“抬头”模型
    立即下载
    加入资料篮
    【期末满分攻略】2022-2023学年浙教版七年级数学下册讲学案-专题03 平行线模型-“骨折”和“抬头”模型01
    【期末满分攻略】2022-2023学年浙教版七年级数学下册讲学案-专题03 平行线模型-“骨折”和“抬头”模型02
    【期末满分攻略】2022-2023学年浙教版七年级数学下册讲学案-专题03 平行线模型-“骨折”和“抬头”模型03
    还剩33页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    【期末满分攻略】2022-2023学年浙教版七年级数学下册讲学案-专题03 平行线模型-“骨折”和“抬头”模型

    展开
    这是一份【期末满分攻略】2022-2023学年浙教版七年级数学下册讲学案-专题03 平行线模型-“骨折”和“抬头”模型,共36页。学案主要包含了模型刨析,典例分析,类型一:“骨折”模型,变式1-1,变式1-2,变式1-3,类型二:“抬头”模型,变式2-1等内容,欢迎下载使用。

     专题03 平行线模型-“骨折”和“抬头”模型
    专题说明


    学习前面两次课的平行线模型做题方法,相信同学们都掌握了做题方法和技巧,本次课学习平行线最后两个模型:平行线模型-“骨折”和“抬头”模型,为以后的学习打好一个坚实的基础。

    【模型刨析】
    模型三“抬头”模型

    点P在EF右侧,在AB、 CD外部

    “臭脚”模型
    结论1:若AB∥CD,则∠P=∠AEP-∠CFP或∠P=∠CFP-∠AEP;
    结论2:若∠P=∠AEP-∠CFP或∠P=∠CFP-∠AEP,则AB∥CD.

    模型四“骨折”模型

    点P在EF左侧,在AB、 CD外部

    “骨折”模型
    结论1:若AB∥CD,则∠P=∠CFP-∠AEP或∠P=∠AEP-∠CFP;
    结论2:若∠P=∠CFP-∠AEP或∠P=∠AEP-∠CFP,则AB∥CD.





    【典例分析】
    【类型一:“骨折”模型】
    【典例1】(2022春•铜仁市期末)2022北京冬奥会掀起了滑雪的热潮,很多同学纷纷来到滑雪场,想亲身感受一下奥运健儿在赛场上风驰电掣的感觉,但是第一次走进滑雪场的你,学会正确的滑雪姿势是最重要的,正确的滑雪姿势是上身挺直略前倾,与小腿平行,使脚的根部处于微微受力的状态,如图所示,AB∥CD,如果人的小腿CD与地面的夹角∠CDE=60°,你能求出身体BA与水平线的夹角∠BAF的度数吗?若能,请你用两种不同的方法求出∠BAF的度数.





    【变式1-1】(2022秋•大渡口区校级期末)如图,AB∥CD,∠ABE=125°,∠C=30°,则∠α=(  )

    A.70° B.75° C.80° D.85°
    【变式1-2】(2022秋•东昌府区校级期末)如图,已知AB∥EF,∠C=90°,则α、β与γ的关系是   .

    【变式1-3】(2022春•牟平区期中)已知:如图,AB∥CD.
    (1)若∠1=∠2,试判断∠E与∠F的大小关系,并说明你的理由.
    (2)猜想∠1、∠2、∠E、∠F之间存在怎样的数量关系?并说明理由.




    【类型二:“抬头”模型】
    【典例2】(2022春•江津区期末)已知AB∥CD,P为平面内一点,连接CP、AP.
    (1)如图1,当∠PCD=40°,∠PAB=86°时,求∠P;
    (2)如图2,在第(1)的条件下,CQ平分∠PCD,AQ平分∠PAB,求∠AQC;
    (3)如图3,CQ平分∠PCD,AQ平分∠PAB,且CP∥AQ,请直接写出∠PCQ与∠PAB的数量关系.









    【变式2-1】(2020春•乳山市期中)【信息阅读】
    材料信息:
    如图①,AB∥DE,点C是直线AB,DE外任意一点,连接BC,DC.
    方法信息:
    如图②,在“材料信息”的条件下,∠B=55°,∠D=35°,求∠BCD的度数.
    解:过点C作CF∥AB.
    ∴∠BCF=∠B=55°.
    ∵AB∥DE,
    ∴CF∥DE.
    ∴∠DCF=∠D=35°.
    ∴∠BCD=55°﹣35°=20°.
    【问题解决】
    (1)通过【信息阅读】,猜想:∠B,∠D,∠BCD之间有怎样的等量关系?请直接写出结论:  ;
    (2)如图③,在“材料信息”的条件下,改变点C的位置,∠B,∠D,∠BCD之间的等量关系是否改变?若不改变,请写出理由;若改变,请写出新的等量关系及理由.






    【变式2-2】(2022•南京模拟)(1)(问题)如图1,若AB∥CD,∠AEP=40°,∠PFD=130°.求∠EPF的度数;
    (2)(问题迁移)如图2,AB∥CD,点P在AB的上方,问∠PEA,∠PFC,∠EPF之间有何数量关系?请说明理由;
    (3)(联想拓展)如图3所示,在(2)的条件下,已知∠EPF=α,∠PEA的平分线和∠PFC的平分线交于点G,用含有α的式子表示∠G的度数.




    【变式2-3】(2022春•新抚区期末)(1)问题:如图1,若AB∥CD,∠AEP=20°,∠PFC=61°.求∠EPF的度数;
    (2)问题迁移:如图2,AB∥CD,点P在AB的上方,问∠PEA,∠PFC,∠EPF之间有何数量关系?请说明理由;
    (3)联想拓展:如图3,在(2)的条件下,已知∠EPF=α,∠PEA的平分线EG和∠PFC的平分线FG交于点G,用含有α的式子表示∠G的度数,直接写出结果.




    【夯实基础】
    1.(2022秋•青岛期末)如图,AB∥DE,∠ABC=80°,∠CDE=140°,则∠BCD的度数为(  )

    A.30° B.40° C.60° D.80°
    2.(2022秋•东莞市校级期中)如图,AB∥CD,∠A=70°,∠C=40°,则∠E为(  )

    A.30° B.40° C.35° D.70°
    3.(2022春•林州市期末)如图,AB∥EF,∠C=90°,则α、β和γ的关系是(  )

    A.β=α+γ B.α+β+γ=180° C.α+β﹣γ=90° D.β+γ﹣α=180°
    4.(2022春•兴平市期中)已知直线AB∥CD,P为平面内一点,连接PA,PD.
    (1)如图①,若∠A=50°,∠D=150°,求∠P的度数;
    (2)如图②,点P在AB上方,则∠A,∠D,∠APD之间有何数量关系?请说明理由.



    5.(2021春•青浦区期中)已知,直线AB∥CD
    (1)如图(1),点G为AB、CD间的一点,联结AG、CG.若∠A=140°,∠C=150°,则∠AGC的度数是多少?
    (2)如图(2),点G为AB、CD间的一点,联结AG、CG.∠A=x°,∠C=y°,则∠AGC的度数是多少?
    (3)如图(3),写出∠BAE、∠AEF、∠EFG、∠FGC、∠GCD之间有何关系?直接写出结论.


    6.(2022春•榆次区期中)综合与实践
    【问题情境】
    在一次综合与实践课上,老师让同学们以平行线为主题,进行相关问题的探究,进一步感受平行线在寻找角之间的关系的作用,以下是智慧小组的活动过程,请你加入他们小组一起完成探究.

    【初步探究】
    (1)如图1,AB∥CD∥EF,当∠1=60°,∠3=140°时,试求∠2的大小;
    【深入探究】
    (2)经过探究发现,图1中的∠1,∠2,∠3之间存在着一定的数量关系,下列选项中能正确表示这种关系的是    ;
    A.∠1+∠2=∠3
    B.∠3+∠2﹣∠1=90°
    C.∠1+∠3﹣∠2=180°
    D.∠3+∠2=2∠1
    【拓展应用】
    (3)如图2,一条公路经过三次拐弯后又回到原来的方向,若第一次的拐角∠1=75°,第三次的拐角∠3=135°,则第二次的拐角∠2=   .





    7.(2022春•江岸区校级月考)已知AB∥MN.
    (1)如图1,求证:∠N+∠E=∠B;
    (2)若F为直线MN、AB之间的一点,∠E=∠EFB,BG平分∠ABF交MN于点G,EF交MN于点C.
    ①如图2,若∠N=57°,且BG∥EN,求∠E的度数;
    ②如图3,若点K在射线BG上,且满足∠KNM=∠ENM,若∠NKB=∠EFB,∠E=∠FBD,直接写出∠E的度数.




    【能力提升】
    8.(2022春•潍坊期中)已知AB∥DC,∠ABC的平分线交DC于点E,∠ADC=90°.

    (1)如图1,试说明:∠EBC=∠BEC;
    (2)如图2,点F在BE的反向延长线上,连接DF交AB于点G,若∠EBC﹣∠F=45°,试说明:DF平分∠ADC;
    (3)如图3,在线段BE上有一点P,满足∠BCP=3∠PCE,过点D作DM∥BE,交AB于点M.若在直线BE上取一点H,使∠PCH=∠ADM,求的值.















    9.(2022春•凤泉区校级期末)如图,已知AB∥CD,E、F分别在AB、CD上,点G在AB、CD之间,连接GE、GF.
    (1)当∠BEG=40°,EP平分∠BEG,FP平分∠DFG时:
    ①如图1,若EG⊥FG,则∠P的度数为    ;
    ②如图2,在CD的下方有一点Q,EG平分∠BEQ,FD平分∠GFQ,求∠Q+2∠P的度数;
    (2)如图3,在AB的上方有一点O,若FO平分∠GFC.线段GE的延长线平分∠OEA,则当∠EOF+∠EGF=100°时,请直接写出∠OEA与∠OFC的数量关系.












    专题03 平行线模型-“骨折”和“抬头”模型
    专题说明


    学习前面两次课的平行线模型做题方法,相信同学们都掌握了做题方法和技巧,本次课学习平行线最后两个模型:平行线模型-“骨折”和“抬头”模型,为以后的学习打好一个坚实的基础。

    【模型刨析】
    模型三“抬头”模型

    点P在EF右侧,在AB、 CD外部

    “臭脚”模型
    结论1:若AB∥CD,则∠P=∠AEP-∠CFP或∠P=∠CFP-∠AEP;
    结论2:若∠P=∠AEP-∠CFP或∠P=∠CFP-∠AEP,则AB∥CD.

    模型四“骨折”模型

    点P在EF左侧,在AB、 CD外部

    “骨折”模型
    结论1:若AB∥CD,则∠P=∠CFP-∠AEP或∠P=∠AEP-∠CFP;
    结论2:若∠P=∠CFP-∠AEP或∠P=∠AEP-∠CFP,则AB∥CD.





    【典例分析】
    【类型一:“骨折”模型】
    【典例1】(2022春•铜仁市期末)2022北京冬奥会掀起了滑雪的热潮,很多同学纷纷来到滑雪场,想亲身感受一下奥运健儿在赛场上风驰电掣的感觉,但是第一次走进滑雪场的你,学会正确的滑雪姿势是最重要的,正确的滑雪姿势是上身挺直略前倾,与小腿平行,使脚的根部处于微微受力的状态,如图所示,AB∥CD,如果人的小腿CD与地面的夹角∠CDE=60°,你能求出身体BA与水平线的夹角∠BAF的度数吗?若能,请你用两种不同的方法求出∠BAF的度数.

    【解答】解:方法一:延长AB交直线DE于点G,

    ∵AG∥CD,
    ∴∠CDE=∠AGE=60°,
    ∵AF∥DE,
    ∴∠BAF=∠AGE=60°;
    方法二:过点B作BM∥AF,过点C作CN∥ED,

    ∴∠BAF=∠3,∠CDE=∠4=60°,
    ∵AF∥DE,
    ∴BM∥CN,
    ∴∠1=∠2,
    ∵AB∥CD,
    ∴∠ABC=∠BCD,
    ∴∠ABC﹣∠1=∠BCD﹣∠2,
    ∴∠3=∠4,
    ∴∠BAF=∠CDE=60°.
    ∴∠BAF的度数为60°.

    【变式1-1】(2022秋•大渡口区校级期末)如图,AB∥CD,∠ABE=125°,∠C=30°,则∠α=(  )

    A.70° B.75° C.80° D.85°
    【答案】D
    【解答】解:如图,作EF∥AB,

    ∵AB∥EF,AB∥CD,
    ∴EF∥CD,
    ∴∠B+∠BEF=180°,∠C=∠CEF,
    ∵∠ABE=125°,∠C=30°,
    ∴∠BEF=55°,∠CEF=30°,
    ∴∠BEC=55°+30°=85°.
    故选:D.
    【变式1-2】(2022秋•东昌府区校级期末)如图,已知AB∥EF,∠C=90°,则α、β与γ的关系是   .

    【答案】α+β﹣γ=90°
    【解答】解:过点C作CM∥AB,过点D作DN∥AB,
    ∵AB∥EF,
    ∴AB∥CM∥DN∥EF,
    ∴∠BCM=α,∠DCM=∠CDN,∠EDN=γ,
    ∵β=∠CDN+∠EDN=∠CDN+γ①,∠BCD=α+∠CDN=90°②,
    由①②得:α+β﹣γ=90°.
    故答案为:α+β﹣γ=90°.

    【变式1-3】(2022春•牟平区期中)已知:如图,AB∥CD.
    (1)若∠1=∠2,试判断∠E与∠F的大小关系,并说明你的理由.
    (2)猜想∠1、∠2、∠E、∠F之间存在怎样的数量关系?并说明理由.

    【解答】解:(1)∠E=∠F,理由如下:
    ∵AB∥CD,
    ∴∠ABC=∠BCD,
    ∵∠1=∠2,
    ∴∠EBC=∠FCB,
    ∴BE∥CF,
    ∴∠E=∠F;
    (2)∠1+∠F=∠BEF+∠2,理由如下:
    如图,延长BE交DC的延长线于点M,

    在四边形EMCF中,∠FEM+∠EMC+∠MCF+∠F=360°,
    ∵∠FEM=180°﹣∠BEF,∠MCF=180°﹣∠2,
    ∴∠180°﹣∠BEF+∠EMC+180°﹣∠2+∠F=360°,
    ∵AB∥CD,
    ∴∠1=∠EMC,
    ∴∠180°﹣∠BEF+∠1+180°﹣∠2+∠F=360°,
    ∴∠1+∠F=∠BEF+∠2
    【类型二:“抬头”模型】
    【典例2】(2022春•江津区期末)已知AB∥CD,P为平面内一点,连接CP、AP.
    (1)如图1,当∠PCD=40°,∠PAB=86°时,求∠P;
    (2)如图2,在第(1)的条件下,CQ平分∠PCD,AQ平分∠PAB,求∠AQC;
    (3)如图3,CQ平分∠PCD,AQ平分∠PAB,且CP∥AQ,请直接写出∠PCQ与∠PAB的数量关系.


    【解答】解:(1)如图:设CD与AP相交于点E,

    ∵AB∥CD,
    ∴∠1=∠A,
    ∵∠1是△CEP的一个外角,
    ∴∠1=∠C+∠P,
    ∴∠A=∠C+∠P,
    ∵∠PCD=40°,∠PAB=86°,
    ∴∠P=∠PAB﹣∠PCD=46°,
    ∴∠P的度数为46°;
    (2)∵CQ平分∠PCD,AQ平分∠PAB,
    ∴∠QCD=∠PCD,∠QAB=∠PAB,
    由(1)得:
    ∠PAB=∠PCD+∠P,∠QAB=∠QCD+∠AQC,
    ∴∠AQC=∠QAB﹣∠QCD
    =∠PAB﹣∠PCD,
    =(∠PAB﹣∠PCD)
    =∠P
    =×46°
    =23°,
    ∴∠AQC的度数为23°;
    (3)∵CP∥AQ,
    ∴∠PCQ=∠AQC,
    ∵CQ平分∠PCD,AQ平分∠PAB,
    ∴∠QCD=∠PCQ,∠QAB=∠PAB,
    由(2)得:
    ∠AQC=∠QAB﹣∠QCD
    ∴∠PCQ=∠PAB﹣∠PCQ,
    ∴2∠PCQ=∠PAB,
    ∴∠PCQ=∠PAB.

    【变式2-1】(2020春•乳山市期中)【信息阅读】
    材料信息:
    如图①,AB∥DE,点C是直线AB,DE外任意一点,连接BC,DC.
    方法信息:
    如图②,在“材料信息”的条件下,∠B=55°,∠D=35°,求∠BCD的度数.
    解:过点C作CF∥AB.
    ∴∠BCF=∠B=55°.
    ∵AB∥DE,
    ∴CF∥DE.
    ∴∠DCF=∠D=35°.
    ∴∠BCD=55°﹣35°=20°.
    【问题解决】
    (1)通过【信息阅读】,猜想:∠B,∠D,∠BCD之间有怎样的等量关系?请直接写出结论:  ;
    (2)如图③,在“材料信息”的条件下,改变点C的位置,∠B,∠D,∠BCD之间的等量关系是否改变?若不改变,请写出理由;若改变,请写出新的等量关系及理由.

    【解答】解(1)过C作CF∥ED,
    ∵AB∥ED,
    ∴AB∥CF,
    ∴∠B=∠BCF,
    ∠D=∠DCF,
    ∵∠BCD=∠BCF﹣∠DCF,
    ∴∠BCD=∠B﹣∠D,
    故答案为:∠BCD=∠B﹣∠D.


    (2)过点C作CF∥AB,
    ∴∠BCF=∠B,
    ∵AB∥DE,
    ∴CF∥DE.
    ∴∠DCF=∠D,
    ∵∠BCD=∠DCF﹣BCF,
    ∴∠BCD=∠D﹣∠B.

    【变式2-2】(2022•南京模拟)(1)(问题)如图1,若AB∥CD,∠AEP=40°,∠PFD=130°.求∠EPF的度数;
    (2)(问题迁移)如图2,AB∥CD,点P在AB的上方,问∠PEA,∠PFC,∠EPF之间有何数量关系?请说明理由;
    (3)(联想拓展)如图3所示,在(2)的条件下,已知∠EPF=α,∠PEA的平分线和∠PFC的平分线交于点G,用含有α的式子表示∠G的度数.

    【解答】解:(1)如图1,过点P作PM∥AB,

    ∴∠1=∠AEP=40°.(两直线平行,内错角相等)
    ∵AB∥CD,(已知)
    ∴PM∥CD,(平行于同一条直线的两直线平行)
    ∴∠2+∠PFD=180°. (两直线平行,同旁内角互补)
    ∵∠PFD=130°,
    ∴∠2=180°﹣130°=50°.
    ∴∠1+∠2=40°+50°=90°.
    即∠EPF=90°.
    (2)∠PFC=∠PEA+∠P.
    理由:如图2,过P点作PN∥AB,则PN∥CD,

    ∴∠PEA=∠NPE,
    ∵∠FPN=∠NPE+∠FPE,
    ∴∠FPN=∠PEA+∠FPE,
    ∵PN∥CD,
    ∴∠FPN=∠PFC,
    ∴∠PFC=∠PEA+∠FPE,即∠PFC=∠PEA+∠P;
    (3)如图,过点G作AB的平行线GH.

    ∵GH∥AB,AB∥CD,
    ∴GH∥AB∥CD,
    ∴∠HGE=∠AEG,∠HGF=∠CFG,
    又∵∠PEA的平分线和∠PFC的平分线交于点G,
    ∴∠HGE=∠AEG=,∠HGF=∠CFG=,
    由(1)可知,∠CFP=∠P+∠AEP,
    ∴∠HGF=(∠P+∠AEP)=(α+∠AEP),
    ∴∠EGF=∠HGF﹣∠HGE=(α+∠AEP)=+∠AEP﹣∠HGE=
    【变式2-3】(2022春•新抚区期末)(1)问题:如图1,若AB∥CD,∠AEP=20°,∠PFC=61°.求∠EPF的度数;
    (2)问题迁移:如图2,AB∥CD,点P在AB的上方,问∠PEA,∠PFC,∠EPF之间有何数量关系?请说明理由;
    (3)联想拓展:如图3,在(2)的条件下,已知∠EPF=α,∠PEA的平分线EG和∠PFC的平分线FG交于点G,用含有α的式子表示∠G的度数,直接写出结果.


    【解答】解:(1)如图,过点P作PM∥AB,

    ∵AB∥CD,PM∥AB,
    ∴AB∥PM∥CD,
    ∴∠1=∠AEP=20°,∠2=∠PFC=61°,
    ∴∠EPF=∠1+∠2=20°+61°=81°;
    (2)∠PFC=∠PEA+∠FPE,理由如下:
    如图2,过P点作PN∥AB,则PN∥CD,

    ∴∠PEA=∠NPE,
    ∵∠FPN=∠NPE+∠EPF,
    ∴∠FPN=∠PEA+∠EPF,
    ∵PN∥CD,
    ∴∠FPN=∠PFC,
    ∴∠PFC=∠PEA+∠EPF;
    (3)如图,过点G作AB的平行线GH,

    ∵GH∥AB,AB∥CD,
    ∴GH∥AB∥CD,
    ∴∠HGE=∠AEG,∠HGF=∠CFG,
    又∵∠PEA的平分线和∠PFC的平分线交于点G,
    ∴∠HGE=∠AEG=∠PEA,∠HGF=∠CFG=∠PFC,
    由(2)可知,∠PFC=∠EPF+∠PEA,
    ∵∠EPF=α,
    ∴∠HGF=(∠EPF+∠PEA)=(α+∠PEA),
    ∴∠EGF=∠HGF﹣∠HGE=(α+∠PEA)﹣∠PEA=α.
    【夯实基础】
    1.(2022秋•青岛期末)如图,AB∥DE,∠ABC=80°,∠CDE=140°,则∠BCD的度数为(  )

    A.30° B.40° C.60° D.80°
    【答案】B
    【解答】解:反向延长DE交BC于M,如图:

    ∵AB∥DE,
    ∴∠BMD=∠ABC=80°,
    ∴∠CMD=180°﹣∠BMD=100°;
    又∵∠CDE=∠CMD+∠C,
    ∴∠BCD=∠CDE﹣∠CMD=140°﹣100°=40°.
    故选:B.
    2.(2022秋•东莞市校级期中)如图,AB∥CD,∠A=70°,∠C=40°,则∠E为(  )

    A.30° B.40° C.35° D.70°
    【答案】A
    【解答】解:∵AB∥CD,
    ∴∠1=∠A=70°,
    ∵∠1=∠E+∠C,∠C=40°,
    ∴∠E=30°.
    故选:A.

    3.(2022春•林州市期末)如图,AB∥EF,∠C=90°,则α、β和γ的关系是(  )

    A.β=α+γ B.α+β+γ=180° C.α+β﹣γ=90° D.β+γ﹣α=180°
    【答案】C
    【解答】解:延长DC交AB与G,延长CD交EF于H.
    在直角△BGC中,∠1=90°﹣α;△EHD中,∠2=β﹣γ,
    ∵AB∥EF,
    ∴∠1=∠2,
    ∴90°﹣α=β﹣γ,即α+β﹣γ=90°.
    故选:C.


    4.(2022春•兴平市期中)已知直线AB∥CD,P为平面内一点,连接PA,PD.
    (1)如图①,若∠A=50°,∠D=150°,求∠P的度数;
    (2)如图②,点P在AB上方,则∠A,∠D,∠APD之间有何数量关系?请说明理由.


    【解答】解:(1)过点P作PE∥AB.
    ∴∠A=∠APE=50°.
    ∵AB∥CD,
    ∴PE∥CD.
    ∴∠EPD+∠CDP=180°.
    ∵∠D=150°,
    ∴∠EPD=30°.
    ∴∠APD=∠APE+∠EPD
    =50°+30°
    =80°.
    (2)∠A,∠D,∠APD之数量关系:∠BAP+∠D﹣∠P=180°.
    理由:延长BA交PD于点E.
    ∵AB∥CD,
    ∴∠BED=∠D.
    ∵∠BED+∠PEB=180°,
    ∴∠PEB=180°﹣∠D.
    ∴∠BAP=∠P+∠BEP
    =∠P+180°﹣∠D.
    即:∠BAP+∠D﹣∠P=180°.


    5.(2021春•青浦区期中)已知,直线AB∥CD
    (1)如图(1),点G为AB、CD间的一点,联结AG、CG.若∠A=140°,∠C=150°,则∠AGC的度数是多少?
    (2)如图(2),点G为AB、CD间的一点,联结AG、CG.∠A=x°,∠C=y°,则∠AGC的度数是多少?
    (3)如图(3),写出∠BAE、∠AEF、∠EFG、∠FGC、∠GCD之间有何关系?直接写出结论.

    【解答】(1)过点G作GE∥AB,

    因为AB∥GE,
    所以∠A+∠AGE=180°(两直线平行,同旁内角互补),
    因为∠A=140°,所以∠AGE=40°,
    因为AB∥GE,AB∥CD,
    所以GE∥CD(平行的传递性),
    所以∠C+∠CGE=180°(两直线平行,同旁内角互补)
    因为∠C=150°,所以∠CGE=30°,
    所以∠AGC=∠AGE+∠CGE=40°+30°=70°.
    (2)过点G作GF∥AB,

    因为AB∥GF,
    所以∠A=AGF(两直线平行,内错角相等),
    因为AB∥GF,AB∥CD,
    所以GF∥CD(平行的传递性),
    所以∠C=∠CGF,
    所以∠AGC=∠AGF+∠CGF=∠A+∠C,
    因为∠A=x°,∠C=y°
    所以∠AGC=(x+y)°,
    (3)如图所示,过点E作EM∥AB,过点F作FN∥AB,过点G作GQ∥CD,

    ∵AB∥CD,
    ∴AB∥EM∥FN∥GQ∥CD(平行的传递性),
    ∴∠BAE=∠AEM(两直线平行,内错角相等),
    ∠MEF=∠EFN(两直线平行,内错角相等),
    ∠NFG=∠FGQ(两直线平行,内错角相等),
    ∠QGC=∠GCD(两直线平行,内错角相等),
    ∴∠AEF=∠BAE+∠EFN,
    ∠FGC=∠NFG+GCD,
    而∠EFN+∠NFG=∠EFG,
    ∴∠BAE+∠EFG+∠GCD=∠AEF+∠FGC.
    6.(2022春•榆次区期中)综合与实践
    【问题情境】
    在一次综合与实践课上,老师让同学们以平行线为主题,进行相关问题的探究,进一步感受平行线在寻找角之间的关系的作用,以下是智慧小组的活动过程,请你加入他们小组一起完成探究.

    【初步探究】
    (1)如图1,AB∥CD∥EF,当∠1=60°,∠3=140°时,试求∠2的大小;
    【深入探究】
    (2)经过探究发现,图1中的∠1,∠2,∠3之间存在着一定的数量关系,下列选项中能正确表示这种关系的是    ;
    A.∠1+∠2=∠3
    B.∠3+∠2﹣∠1=90°
    C.∠1+∠3﹣∠2=180°
    D.∠3+∠2=2∠1
    【拓展应用】
    (3)如图2,一条公路经过三次拐弯后又回到原来的方向,若第一次的拐角∠1=75°,第三次的拐角∠3=135°,则第二次的拐角∠2=   .
    【解答】

    解:(1)如图1,延长DC交OB于G,
    ∵AB∥CD,
    ∴∠1=∠BGD,
    ∵∠BGD=∠2+∠OCG,
    ∴∠1=∠2+∠OCG,
    ∵∠OCG=180°﹣∠3,
    ∴∠1=∠2+180°﹣∠3,
    ∴∠1+∠3﹣∠2=180°,
    ∵∠1=60°,∠3=140°,
    ∴∠2=20°
    (2)如图1,延长DC交OB于G,
    ∵AB∥CD,
    ∴∠1=∠BGD,
    ∵∠BGD=∠2+∠OCG,
    ∴∠1=∠2+∠OCG,
    ∵∠OCG=180°﹣∠3,
    ∴∠1=∠2+180°﹣∠3,
    ∴∠1+∠3﹣∠2=180°,
    故选:C.
    (3)如图2,延长DC交AB于F,
    ∵DE∥AB,
    ∴∠3+∠CFB=180°,
    ∴∠CFB=∠180°﹣∠3,
    ∵∠2=∠1+∠DFB,
    ∴∠2=∠1+180°﹣∠3,
    ∴∠2+∠3﹣∠1=180°
    ∵∠1=75°,∠3=135°,
    ∴∠2=120°.
    故答案为:120°
    7.(2022春•江岸区校级月考)已知AB∥MN.
    (1)如图1,求证:∠N+∠E=∠B;
    (2)若F为直线MN、AB之间的一点,∠E=∠EFB,BG平分∠ABF交MN于点G,EF交MN于点C.
    ①如图2,若∠N=57°,且BG∥EN,求∠E的度数;
    ②如图3,若点K在射线BG上,且满足∠KNM=∠ENM,若∠NKB=∠EFB,∠E=∠FBD,直接写出∠E的度数.


    【解答】解:(1)如图,

    过E作EH∥MN,
    ∴∠N=∠HEN,
    又∵MN∥AB,
    ∴EH∥AB∥MN,
    ∴∠B=∠HEB,
    即∠B=∠HEN+∠NEB=∠N+∠BEN;
    (2)①如图,

    过F作FP∥EN,交MN于H点,则BG∥EN∥FP,
    ∵∠N=57°,
    ∴∠CHF=∠CGB=∠ABG=57°,
    ∵BG平分∠ABF,
    ∴∠ABF=2∠ABG=114°,
    ∵EN∥PF,
    ∴∠E=∠EFP,
    ∵∠E=∠EFB,
    ∴114°+∠E=4∠E,
    ∴∠E=38°;
    ②如图,过点F作FP∥AD,

    设∠E=a=∠FBD,则∠PFB=α,∠EFP=3α,
    ∴∠ENM=2a,∠KNM=,
    当K在BG上,∠NKB=∠EFB=4a,
    ∴∠NGB==∠ABG=∠GBF,
    ∴,
    ∴a=22.5°;
    当K在BG延长线上时,∠NGB=,∠ABG=,
    ∴,
    ∴a=18°,
    综上所述,∠E=22.5°或18°.
    【能力提升】
    8.(2022春•潍坊期中)已知AB∥DC,∠ABC的平分线交DC于点E,∠ADC=90°.

    (1)如图1,试说明:∠EBC=∠BEC;
    (2)如图2,点F在BE的反向延长线上,连接DF交AB于点G,若∠EBC﹣∠F=45°,试说明:DF平分∠ADC;
    (3)如图3,在线段BE上有一点P,满足∠BCP=3∠PCE,过点D作DM∥BE,交AB于点M.若在直线BE上取一点H,使∠PCH=∠ADM,求的值.

    【解答】(1)证明:由角平分线性质可知,
    ∠ABE=∠EBC,
    ∵AB∥DC,
    ∠ABE=∠BEC,
    ∴∠EBC=∠BEC.
    (2)证明:由(1)可知,
    ∠EBC=∠BEC,
    由外角性质可知,
    ∠FEC=∠F+∠FDC
    又∵∠EBC﹣∠F=45°,
    ∴∠FEC=∠F+45°,
    ∴∠FDC=45°,
    又∵∠ADC=90°,
    ∴∠ADF=∠FDC=45°,
    ∴DF平分∠ADC.
    (3)解:如图,∠PCH=∠ADM,∠PCH′=∠ADM,

    ①当H在PB之间时,
    设∠PCE=α,则∠BCP=3α,∠BCD=4α,
    ∵CB=CE,
    ∴∠CBE=,
    又∵∠CBE=∠MDC
    ∴∠ADM=90°﹣=2α,
    ∴∠BCH=α,∠ECH=3α,
    ∴==.
    同理,当H点位于H′时,∠DCH′=α,
    ==5,
    ∴的值为或5.
    9.(2022春•凤泉区校级期末)如图,已知AB∥CD,E、F分别在AB、CD上,点G在AB、CD之间,连接GE、GF.
    (1)当∠BEG=40°,EP平分∠BEG,FP平分∠DFG时:
    ①如图1,若EG⊥FG,则∠P的度数为    ;
    ②如图2,在CD的下方有一点Q,EG平分∠BEQ,FD平分∠GFQ,求∠Q+2∠P的度数;
    (2)如图3,在AB的上方有一点O,若FO平分∠GFC.线段GE的延长线平分∠OEA,则当∠EOF+∠EGF=100°时,请直接写出∠OEA与∠OFC的数量关系.


    【解答】解:(1)①如图,分别过点G,P作GN∥AB,PM∥AB,

    ∴∠BEG=∠EGN,
    ∵AB∥CD,
    ∴∠NGF=∠GFD,
    ∴∠EGF=∠BEG+∠GFD,
    同理可得∠EPF=∠BEP+∠PFD,
    ∵EG⊥FG,
    ∴∠EGF=90°,
    ∵EP平分∠BEG,FP平分∠DFG;
    ∴∠BEP=BEG,∠PFD=GFD,
    ∴∠EPF=(∠BEG+∠GFD)=EGF=45°,
    故答案为:45°;
    ②如图,过点Q作QR∥CD,

    ∵∠BEG=40°,
    ∵EG恰好平分∠BEQ,FD恰好平分∠GFQ,
    ∠GEQ=∠BEG=40°,∠GFD=∠QFD,
    设∠GFD=∠QFD=α,
    ∵QR∥CD,AB∥CD,
    ∴∠EQR=180°﹣∠QEB=180°﹣2∠QEG=100°,
    ∵CD∥QR,
    ∴∠DFQ+∠FQR=180°,
    ∴α+∠FQR=180°,
    ∴α+∠FQE=80°,
    ∴∠FQE=80°﹣α,
    由①可知∠G=2∠P=∠BEG+∠GFD=40°+α,
    ∴∠FQE+2∠P=80°﹣α+40°+α=120°;
    (2)结论:∠OEA+2∠PFC=160°.
    理由:∵在AB的上方有一点O,若FO平分∠GFC,线段GE的延长线平分∠OEA,设H为线段GE的延长线上一点,
    ∴∠OFC=∠OFG,∠OEH=∠HEA,
    设∠OFC=∠OFG=β,∠OEH=∠HEA=α,
    如图,过点O作OT∥AB,则OT∥CD,

    ∴∠TOF=∠OFC=β,∠TOE=∠OEA=2α,
    ∴∠EOF=β﹣2α,
    ∵∠HEA=∠BEG=a,∠GFD=180°﹣2β,
    由(1)可知∠G=∠BEG+∠GFD=α+180°﹣2β,
    ∵∠EOF+∠EGF=100°,
    ∴β﹣2α+α+180°﹣2β=100°,
    ∴α+β=80°,
    ∴∠OEA+∠OFC=80°,
    ∴∠OEA+2∠PFC=160°.





    相关学案

    【期末满分攻略】2022-2023学年浙教版七年级数学下册讲学案-专题02 平行线模型-“铅笔”模型: 这是一份【期末满分攻略】2022-2023学年浙教版七年级数学下册讲学案-专题02 平行线模型-“铅笔”模型,共31页。学案主要包含了模型刨析,典例分析,变式1-1,变式1-2,变式1-3,夯实基础,能力提升等内容,欢迎下载使用。

    【期末满分攻略】2022-2023学年浙教版七年级数学下册讲学案-专题01 平行线模型-“猪蹄”模型(M模型): 这是一份【期末满分攻略】2022-2023学年浙教版七年级数学下册讲学案-专题01 平行线模型-“猪蹄”模型(M模型),共40页。学案主要包含了模型刨析,典例分析,变式1-1,变式1-2,变式1-3,变式2-1,变式2-2,夯实基础等内容,欢迎下载使用。

    【期末满分攻略】2022-2023学年北师大版七年级数学下册讲学案-专题09 平行线模型-“骨折”和“抬头”模型(原卷版+解析版): 这是一份【期末满分攻略】2022-2023学年北师大版七年级数学下册讲学案-专题09 平行线模型-“骨折”和“抬头”模型(原卷版+解析版),文件包含期末满分攻略2022-2023学年北师大版七年级数学下册讲学案-专题09平行线模型-“骨折”和“抬头”模型解析版docx、期末满分攻略2022-2023学年北师大版七年级数学下册讲学案-专题09平行线模型-“骨折”和“抬头”模型原卷版docx等2份学案配套教学资源,其中学案共29页, 欢迎下载使用。

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        【期末满分攻略】2022-2023学年浙教版七年级数学下册讲学案-专题03 平行线模型-“骨折”和“抬头”模型
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map