|试卷下载
终身会员
搜索
    上传资料 赚现金
    河北省衡水市2023届高三第二次模拟考试数学试卷(含解析)
    立即下载
    加入资料篮
    河北省衡水市2023届高三第二次模拟考试数学试卷(含解析)01
    河北省衡水市2023届高三第二次模拟考试数学试卷(含解析)02
    河北省衡水市2023届高三第二次模拟考试数学试卷(含解析)03
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    河北省衡水市2023届高三第二次模拟考试数学试卷(含解析)

    展开
    这是一份河北省衡水市2023届高三第二次模拟考试数学试卷(含解析),共22页。试卷主要包含了单选题,多选题,填空题,双空题,解答题等内容,欢迎下载使用。

    河北省衡水市2023届高三第二次模拟考试数学试卷

    学校:___________姓名:___________班级:___________

    一、单选题

    1.已知集合,则    

    A. B. C. D.

    2.已知,其中i为虚数单位,则z的虚部是(    

    A. B. C. D.

    3.已知双曲线的一条渐近线与直线垂直,若右焦点到渐近线的距离为2,则此双曲线的方程为(    

    A. B.

    C. D.

    4.已知为锐角,且,则    

    A. B. C. D.

    5.2022年2月4日,中国北京第24届奥林匹克冬季运动会开幕式以二十四节气的方式开始倒计时创意新颖,惊破了全球观众,衡阳市某中学力了弘扬我国二十四节气文化,特制作出“立春”、“惊蛰”、“清明”、“立夏”、“芒种”、“小暑”六张知识展板分别放置在六个并排的文化橱窗里,要求“立春”和“惊蛰”两块展板相邻,且“清明”与“惊蛰”两块展板不相邻,则不同的放置方式有多少种?(    

    A.192 B.240 C.120 D.288

    6.《九章算术》是中国古代人民智慧的结晶,其卷五“商功”中有如下描述:“今有圆亭,下周三丈,上周二丈,高一丈”,译文为“有一个圆台形状的建筑物,下底面周长为三丈,上底面周长为二丈,高为一丈”,则该圆台的侧面积(单位:平方丈)为(    

    A. B. C. D.

    7.已知,则abc的大小关系为(    

    A. B.

    C. D.

    8.已知是单位向量,0.若向量满足||=1,则||的最大值为(  )

    A. B. C. D.

     

    二、多选题

    9.设等差数列{an}的前n项和为Sn.若S3=0,a4=8,则(    

    A.Sn=2n2-6n B.Snn2-3n

    C.an=4n-8 D.an=2n

    10.已知分别为随机事件的对立事件,,则下列结论正确的是(    

    A.

    B.

    C.若互斥,则

    D.若独立,则

    11.已知正方体的棱长为2,MN分别是的中点,则(    

    A.

    B.

    C.平面截此正方体所得截面的周长为

    D.三棱锥的体积为3

    12.已知函数,其中.对于任意的,函数在区间上至少能取到两次最大值,则下列说法正确的是(    

    A.函数的最小正周期小于

    B.函数内不一定取到最大值

    C.

    D.函数内一定会取到最小值

     

    三、填空题

    13.已知向量, 若,则_______.

    14.已知奇函数上单调递增,在上单调递减,且有且仅有一个零点,则的函数解析式可以是___________.

    15.已知直线截圆所得弦长大于8,则实数的取值范围是________.

     

    四、双空题

    16.在处理多元不等式的最值时,我们常用构造切线的方法来求解.例如:曲线处的切线方程为,且,若已知,则,取等条件为,所以的最小值为3.已知函数,若数列满足,且,则数列的前10项和的最大值为___________;若数列满足,且,则数列的前100项和的最小值为___________.

     

    五、解答题

    17.已知△ABC的内角ABC的对边分别为abc,且

    (1)求角A的大小:

    (2)若,求△ABC的面积.

    18.在递增的等比数列中,前n项和为,若.

    (1)求数列的通项公式;

    (2)若,求数列的前n项和.

    19.如图,四棱锥中,底面是菱形,,平面平面,且是边长为4的等边三角形,的中点,点在线段上.

    (1)若,求证:平面平面

    (2)若的中点,求二面角的余弦值.

    20.2022年11月21日,我国迄今水下考古发现的体量最大的木质沉船长江口二号古船,在长江口横沙水域成功整体打捞出水,上海市文物局会同交通运输部上海打捞局,集成先进的打捞工艺、技术路线、设备制造,最终研究并形成了世界首创的“弧形梁非接触文物整体迁移技术”来打捞这艘古船.这是全新的打捞解决方案,创造性地融合了核电弧形梁加工工艺、隧道盾构掘进工艺、沉管隧道对接工艺,并运用液压同步提升技术,综合监控系统等先进的高新技术.这些技术也是首次应用于文物保护和考古领域.近年来,随着科学技术的发展,越来越多的古迹具备了发掘的条件,然而相关考古专业人才却严重不足.某调查机构为了解高三学生在志愿填报时对考古专业的态度,在某中学高三年级的1200名男生和800名女生中按比例分配的分层,随机抽取20名学生进行了调查,调查结果如下表:

     

    不填报

    填报

    非第一志愿填报

    第一志愿填报

    男生

    x

    5

    2

    女生

    y

    1

    0

     

    (1)完成列联表,并依据小概率值的独立性检验判断是否可以认为该校学生填报志愿时“是否填报考古专业”与性别有关联?

     

    男生

    女生

    总计

    不填报

     

     

     

    填报

     

     

     

    总计

     

     

    20

     

    (2)从抽出的男生中再随机抽取3人进一步了解情况,记X为抽取的这3名男生中“第一志愿填报考古专业”和“非第一志愿填报考古专业”人数差的绝对值,求X的数学期望.

    附:.

    0.05

    0.010

    0.001

    3.841

    6.635

    10.828

     

     

    21.已知椭圆的离心率为,短轴一个端点到右焦点的距离为2.

    (1)求椭圆的标准方程;

    (2)过点的直线交椭圆于两点,交轴于点,设,试判断是否为定值?请说明理由.

    22.已知函数.

    (1)若函数,试研究函数的极值情况;

    (2)记函数在区间内的零点为,记,若在区间内有两个不等实根,证明:.


    参考答案:

    1.B

    【分析】根据给定条件,求出集合B,再利用交集的定义求解作答.

    【详解】因为

    所以

    故选:B.

    2.B

    【分析】将复数化简即可.

    【详解】

    则则z的虚部是

    故选:B.

    3.A

    【分析】先求得双曲线C的渐近线方程,根据其与直线l垂直,可得ab的关系,根据点到直线的距离公式,可求得b值,即可得a值,进而可得答案.

    【详解】根据题意得:双曲线C的渐近线方程为

    因为其一条渐近线与直线l垂直,所以

    解得,即a=2b

    又右焦点到渐近线的距离为2,则,解得b=2,则a=4,

    所以双曲线的方程为

    故选:A

    4.B

    【分析】运用两角和与差的正弦公式和同角的商数关系,计算即可得到所求值

    【详解】因为,所以

    所以,所以.

    故选:B

    5.A

    【分析】先用捆绑法得到,只有“立春”和“惊蛰”相邻的情况,再减去“清明”和“惊蛰”相邻的情况即可.

    【详解】由题,只考虑“立春”和“惊蛰”时,利用捆绑法得到,

    当“立春”和“惊蛰”和“清明”均相邻时,只有2种排法,即“惊蛰”在中间,“立春”“清明”分布两侧,此时再用捆绑法,将三者捆在一起即

    所以最终满足题意的排法为240-48=192.

    故选:A

    6.B

    【分析】设圆台的上底面半径为,下底面半径为,由已知周长求得,代入圆台的侧面积公式,即可求解.

    【详解】设圆台的上底面半径为,下底面半径为

    可得,可得

    又由圆台的高为1丈,可得圆台的母线长为

    所以圆台的侧面积为.

    故选:B.

    7.C

    【分析】构造,求导,结合函数单调性分析,即可判断.

    【详解】令,则

    ,有,令,有

    故函数单调递增,在单调递减,

    ,即

    ,则

    ,有,令,有

    故函数单调递增,在单调递减,

    ,即

    综上:.

    故选:C

    8.C

    【分析】通过建立直角坐标系,利用向量的坐标运算和圆的方程及数形结合即可得出.

    【详解】

    ∵||=||=1,且

    ∴可设

    ,即(x﹣1)2+(y﹣1)2=1.

    的最大值

    故选C

    【点睛】熟练掌握向量的坐标运算和圆的方程及数形结合是解题的关键.

    9.AC

    【分析】根据已知条件求得,由此求得,从而确定正确选项,

    【详解】依题意

    所以.

    故选:AC

    10.ABD

    【分析】结合互斥事件、对立事件的定义,根据条件概率公式判断即可.

    【详解】选项A中:由对立事件定义可知,选项正确;

    选项中:, 选项B正确;

    选项C中:AB互斥,,,故选项C错误;

    选项D中:AB独立,则,则,故选项D正确.

    故选:.

    11.BC

    【分析】建立坐标系,利用空间向量坐标的关系判定A,B选项的正误,把截面作出来,根据截面形状可求周长,利用等体积进行转化可求三棱锥的体积.

    【详解】如图,以为坐标原点,所在直线分别为轴,建立空间直角坐标系,

    ;

    ,;

    因为,所以不平行,A不正确;

    因为,所以,B正确;

    如图,取的中点,取的中点,连接

    由正方体的性质可知,

    因为分别为的中点,所以,所以

    平面截正方体所得截面为梯形

    因为正方体的棱长为2,所以,

    所以平面截此正方体所得截面的周长为,C正确;

    由上面分析可知,平面平面

    所以平面,即点到平面的距离等于点到平面的距离;

    ,所以三棱锥的体积为1,D不正确.

    故选:BC.

    12.AD

    【分析】先根据在区间上至少能取到两次最大值可得,据此可得,从而可得判断AB的正误,再根据的范围可得判断CD的正误,注意范围的进一步探究.

    【详解】由题意可知,,即A正确;

    因为,所以

    则当时,

    所以函数上一定有最大值点,即B错误;

    由题意可知,任意,总存在,使得:

    ,故

    整理得

    可得,即C错误;

    时,

    又因为,故

    所以函数上一定有最小值点,即D正确.

    故选:AD.

    【点睛】思路点睛:对于含参数的正弦型函数问题,注意根据最值的特征合理刻画函数的性质,从而得到参数的取值范围内,此类问题,整体法是处理此类问题的基本策略.

    13.

    【分析】可求出,根据即可得出,进行数量积的坐标运算即可求出的值.

    【详解】由题意得

    ),

    ,∴

    故答案为

    【点睛】本题主要考查向量垂直的充要条件,以及向量加法和数量积的坐标运算,属于基础题.

    14.(答案不唯一)

    【分析】根据已知直接可得出.

    【详解】由题意可知,仅有一个零点,结合单调性,可知.

    故答案为:(答案不唯一).

    15.

    【分析】由题意可得弦心距,即,由此求得的取值范围.

    【详解】圆的圆心,半径,弦长大于8,

    故弦心距,即,解得

    所以实数的取值范围是

    故答案为:

    16.     70     540

    【分析】①先求导数,求出处的切线方程,结合,即可求出的前10项和的最大值;

    ②求出处的切线方程为,结合,即可求出的前100项和的最小值.

    【详解】,则上单增,图像如下所示:

    ①易知,所以曲线处的切线方程为,结合图像易知,所以

    所以,当且仅当时,等号成立;

    ②曲线处的切线为,因为,则令此切线过原点,解得

    所以曲线处的切线方程为,结合图像易知,所以

    当且仅当时,等号成立,取,即的前100项中有60项为3,40项为0时,等号成立.

    故答案为:70;540.

    17.(1)

    (2)

     

    【分析】(1)根据正弦定理边角互化得,进而根据辅助角公式可得,即可求解.

    (2)根据正弦定理边角互化得,由余弦定理可得,进而根据面积公式即可求解.

    【详解】(1)根据题意,得

    由正弦定理可得,即

    ,所以,所以,所以.

    (2)由,得,又

    由余弦定理可得解得

    所以.

    18.(1)

    (2)

     

    【分析】小问1:由,化为,从而求得公比,即可求通项公式;

    小问2:利用的通项公式求得,根据等差求和公式即可求解.

    (1)

    设等比数列的公比为q,由

    ,即,∴.依题意,可知

    (2)

    由(1)可得,∴

    19.(1)证明见解析

    (2)

     

    【分析】(1)先利用余弦定理可得到,故,利用线面垂直的判定定理证明平面即可;

    (2)以O为原点,分别为xyz轴建立空间直角坐标系,根据空间向量的坐标运算以及二面角的计算公式,即可得到结果.

    【详解】(1)因为是边长为4的等边三角形,的中点,

    所以

    因为

    所以在中,

    所以

    因为平面平面,平面平面平面

    所以平面,因为平面,所以

    因为平面,所以平面

    因为平面,所以平面平面

    (2)连接,易得是等边三角形,且的中点,所以

    O为原点,分别为xyz轴建立空间直角坐标系

    设平面的法向量,则

    ,则,∴

    设平面的法向量,则

    ,则,∴

    设二面角,由图可得二面角为锐角,

    故二面角的余弦值为.

    20.(1)列联表见解析,是

    (2)

     

    【分析】(1)根据抽取比例计算样本中男女生填报人数,完成列联表,代入公式计算,与3.841比较,下结论;

    (2)由题得X的可能取值为0,1,2,3,分别计算其概率,列出分布列,计算期望.

    【详解】(1)设抽取的20人中,男、女生人数分别为,则

    所以.

    列联表如下:

     

    男生

    女生

    总计

    不填报

    5

    7

    12

    填报

    7

    1

    8

    总计

    12

    8

    20

     

    零假设为:“是否填报考古专业”与性别无关联.

    根据列联表中的数据,经计算得到.

    根据小概率值的独立性检验,我们推断不成立,即认为“是否填报考古专业”与性别有关联,此推断犯错误的概率不大于0.05.

    (2)X的可能取值为0,1,2,3,

    .

    所以.

    21.(1)

    (2)是定值,理由见解析

     

    【分析】(1)根据已知条件短轴一个端点到右焦点的距离为长半轴,再利用离心率公式即可求解.

    (2)根据已知条件设出直线的方程,与椭圆方程联立方程组,消去得关于的一元二次方程,利用韦达定理得出交点横坐标的关系,结合向量的关系得出坐标的关系即可求解.

    【详解】(1)由题可得,,又

    所以

    所以椭圆的标准方程为.

    (2)由题可得直线斜率存在,由(1)知设直线的方程为,则,消去,整理得:

    ,则

     ,则,由可得,所以.

    同理可得,.

    所以

    所以,为定值.

    22.(1)答案见解析;(2)证明见解析.

    【解析】(1)由求出,分别讨论的关系,从而求出的范围,可得函数的增减区间,根据单调性可得函数的极值情况;(2)先证明,即在区间内单调递增,根据零点存在性定理,存在,使得,可得以,要证,只需证,即,记,其中,利用导数可证明单调递增,故当时,,即可得,进而可得结果.

    【详解】解:(1)由题意,得

    .

    ,得

    ①当时,

    所以上单调递增,在上单调递减;

    所以处取极大值

    处取极小值.

    ②当时,恒成立,所以不存在极值;

    ③当时,

    所以上单调递增,在上单调递减;

    所以处取极大值

    处取极小值.

    综上,当时,处取极大值,在处取极小值;当时,不存在极值;时,处取极大值,在处取极小值.

    (2),定义域为

    ,而

    ,即在区间内单调递增

    在区间内的图象连续不断,

    故根据零点存在性定理,有在区间内有且仅有唯一零点.

    所以存在,使得

    且当时,

    时,

    所以

    时,

    单调递增;

    时,

    单调递减;

    在区间内有两个不等实根

    .

    要证,即证

    ,而在区间内单调递减,

    故可证

    又由

    即证

    ,其中

    ,则

    时,

    时,

    ,故

    所以

    因此

    单调递增,故当时,

    ,故,得证.

    【点睛】本题考查分类讨论求函数的极值以及零点偏移证明不等式.

    方法点睛:

    (1)根据零点判断两根的范围;

    (2)由证明的结果逆推关系式,一般为要想证明,只需证,再根据的范围以及函数的单调性寻找要证明的关系式;

    (3)根据同为零点的关系替换,即转化为证明

    (4)对函数求导,求单调性证明即可.

     

    相关试卷

    2022-2023学年河北省衡水市武强中学高二(下)期末数学试卷(含详细答案解析): 这是一份2022-2023学年河北省衡水市武强中学高二(下)期末数学试卷(含详细答案解析),共14页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。

    2022-2023学年河北省衡水市武强中学高一(下)期末数学试卷(含解析): 这是一份2022-2023学年河北省衡水市武强中学高一(下)期末数学试卷(含解析),共16页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。

    河北省衡水市第一中学2021届高三第二次联合考试数学试卷(无答案): 这是一份河北省衡水市第一中学2021届高三第二次联合考试数学试卷(无答案),共4页。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map