资料中包含下列文件,点击文件名可预览资料内容
还剩4页未读,
继续阅读
题型七 函数的基本性质 类型三 二次函数(专题训练)-中考数学二轮复习讲练测(全国通用)
展开这是一份题型七 函数的基本性质 类型三 二次函数(专题训练)-中考数学二轮复习讲练测(全国通用),文件包含题型七函数的基本性质类型三二次函数专题训练解析版docx、题型七函数的基本性质类型三二次函数专题训练原卷版docx等2份试卷配套教学资源,其中试卷共33页, 欢迎下载使用。
题型七 函数的基本性质
类型三 二次函数(专题训练)
1.将抛物线向下平移两个单位,以下说法错误的是( )
A.开口方向不变 B.对称轴不变 C.y随x的变化情况不变 D.与y轴的交点不变
【答案】D
【分析】
根据二次函数的平移特点即可求解.
【详解】
将抛物线向下平移两个单位,开口方向不变、对称轴不变、故y随x的变化情况不变;与y轴的交点改变
故选D.
【点睛】
此题主要考查二次函数的函数与图象,解题的关键是熟知二次函数图象平移的特点.
2.抛物线上部分点的横坐标x,纵坐标y的对应值如表:
x
-2
-1
0
6
y
0
4
6
1
下列结论不正确的是( )
A.抛物线的开口向下 B.抛物线的对称轴为直线
C.抛物线与x轴的一个交点坐标为 D.函数的最大值为
【答案】C
【分析】利用待定系数法求出抛物线解析式,由此逐一判断各选项即可
【详解】解:由题意得,解得,
∴抛物线解析式为,
∴抛物线开口向下,抛物线对称轴为直线,该函数的最大值为,故A、B、D说法正确,不符合题意;令,则,解得或,
∴抛物线与x轴的交点坐标为(-2,0),(3,0),故C说法错误,符合题意;故选C.
【点睛】本题主要考查了二次函数的性质,正确求出二次函数解析式是解题的关键.
3.已知抛物线,下列结论错误的是( )
A.抛物线开口向上 B.抛物线的对称轴为直线
C.抛物线的顶点坐标为 D.当时,y随x的增大而增大
【答案】D
【分析】根据二次函数的开口方向、对称轴、顶点坐标以及增减性对各选项分析判断即可得解.
【详解】解:抛物线中,a>0,抛物线开口向上,因此A选项正确,不符合题意;
由解析式得,对称轴为直线,因此B选项正确,不符合题意;
由解析式得,当时,y取最小值,最小值为1,所以抛物线的顶点坐标为,因此C选项正确,不符合题意;
因为抛物线开口向上,对称轴为直线,因此当时,y随x的增大而减小,因此D选项错误,符合题意;故选D.
【点睛】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在中,对称轴为,顶点坐标为.
4.已知抛物线(是常数,)经过点,当时,与其对应的函数值.有下列结论:①;②关于x的方程有两个不等的实数根;③.其中,正确结论的个数是( )
A.0 B.1 C.2 D.3
【答案】D
【分析】
根据函数与点的关系,一元二次方程根的判别式,不等式的性质,逐一计算判断即可
【详解】
∵抛物线(是常数,)经过点,当时,与其对应的函数值.
∴c=1>0,a-b+c= -1,4a-2b+c>1,
∴a-b= -2,2a-b>0,
∴2a-a-2>0,
∴a>2>0,
∴b=a+2>0,
∴abc>0,
∵,
∴△==>0,
∴有两个不等的实数根;
∵b=a+2,a>2,c=1,
∴a+b+c=a+a+2+1=2a+3,
∵a>2,
∴2a>4,
∴2a+3>4+3>7,
故选D.
【点睛】
本题考查了二次函数的性质,一元二次方程根的判别式,不等式的基本性质,熟练掌握二次函数的性质,灵活使用根的判别式,准确掌握不等式的基本性质是解题的关键.
5.如图,二次函数的图象的对称轴是直线,则以下四个结论中:①,②,③,④.正确的个数是( )
A.1 B.2 C.3 D.4
【答案】B
【解析】
【分析】
由开口方向,对称轴方程,与轴的交点坐标判断的符号,从而可判断①②,利用与轴的交点位置得到>,结合< 可判断③,利用当 结合图像与对称轴可判断④.
【详解】
解:由函数图像的开口向下得<
由对称轴为> 所以>
由函数与轴交于正半轴,所以>
< 故①错误;
,
故②正确;
由交点位置可得:>,
<
>,
<
< 故③错误;
由图像知:当
此时点在第三象限,
<
< 故④正确;
综上:正确的有:②④,
故选B.
【点睛】
本题考查的是二次函数的图像与系数的关系,同时考查利用二次函数的图像判断代数式的符号,掌握以上知识是解题的关键.
6.已知二次函数y=x2−2x−3的自变量x1,x2,x3对应的函数值分别为y1,y2,y3.当−1
A. B. C. D.
【答案】B
【分析】先求得抛物线的对称轴为直线x=1,抛物线与x轴的交点坐标,画出草图,利用数形结合,即可求解.
【详解】解:y=x2−2x−3=(x-1)2-4,∴对称轴为直线x=1,
令y=0,则(x-1)2-4=0,解得x1=-1,x2=3,
∴抛物线与x轴的交点坐标为(-1,0),(3,0),
二次函数y=x2−2x−3的图象如图:
由图象知.故选:B.
【点睛】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.利用数形结合解题是关键.
7.如图,已知抛物线(,,为常数,)经过点,且对称轴为直线,有下列结论:①;②;③;④无论,,取何值,抛物线一定经过;⑤.其中正确结论有( )
A.1个 B.2个 C.3个 D.4个
【答案】D
【分析】
①根据图像开口向上,对称轴位置,与y轴交点分别判断出a,b,c的正负
②根据对称轴公式,判断的大小关系
③根据时,,比较与0的大小;
④根据抛物线的对称性,得到与时的函数值相等结合②的结论判断即可
⑤根据抛物线对称轴找到顶点坐标的纵坐标,比较任意一点与顶点的纵坐标值,即比较函数值的大小即可判断结论.
【详解】
①图像开口朝上,故 ,根据对称轴“左同右异”可知,
图像与y轴交点位于x轴下方,可知c<0
故①正确;
②得
故②错误;
③经过
又由①得c<0
故③正确;
④根据抛物线的对称性,得到与时的函数值相等
当时,即
即
经过,即经过
故④正确;
⑤当时,, 当时,
函数有最小值
化简得,
故⑤正确.
综上所述:①③④⑤正确.
故选D.
【点睛】
本题考查二次函数图象与性质,二次函数解析式中系数与图像的关系,结合图像逐项分析,结已知条件得出结论是解题的关键.
8.点P(m,n)在以y轴为对称轴的二次函数y=x2+ax+4的图象上.则m﹣n的最大值等于( )
A. B.4 C.﹣ D.﹣
【答案】C
【解析】
【分析】
根据题意,可以得到a的值以及m和n的关系,然后将m、n作差,利用二次函数的性质,即可求出m﹣n的最大值.
【详解】
解:∵点P(m,n)在以y轴为对称轴的二次函数y=x2+ax+4的图象上,
∴a=0,
∴n=m2+4,
∴m﹣n=m﹣(m2+4)=﹣m2+m﹣4=﹣(m﹣)2﹣,
∴当m=时,m﹣n取得最大值,此时m﹣n=﹣,
故选:C.
【点睛】
本题考查了二次函数的图象与性质,属于常考题型,正确理解题意、熟练掌握二次函数的性质是解题的关键.
9.如图,二次函数的图像与轴相交于,两点,对称轴是直线,下列说法正确的是( )
A. B.当时,的值随值的增大而增大
C.点的坐标为 D.
【答案】D
【分析】结合二次函数图像与性质,根据条件与图像,逐项判定即可.
【详解】解:A、根据图像可知抛物线开口向下,即,故该选项不符合题意;
B、根据图像开口向下,对称轴为,当,随的增大而减小;当,随的增大而增大,故当时,随的增大而增大;当,随的增大而减小,故该选项不符合题意;
C、根据二次函数的图像与轴相交于,两点,对称轴是直线,可得对称轴,解得,即,故该选项不符合题意;
D、根据可知,当时,,故该选项符合题意;故选:D.
【点睛】本题考查二次函数的图像与性质,根据图像得到抛物线开口向下,根据对称轴以及抛物线与轴交点得到是解决问题的关键.
10.抛物线经平移后,不可能得到的抛物线是( )
A. B. C. D.
【答案】D
【分析】通过了解平移过程,得到二次函数平移过程中不改变开口大小和开口方向,所以a不变,选出答案即可.
【详解】解:抛物线经平移后,不改变开口大小和开口方向,所以a不变,而D选项中a=-1,不可能是经过平移得到,故选:D.
【点睛】本题考查了二次函数平移的知识点,上加下减,左加右减,熟练掌握方法是解题关键,还要掌握通过平移不能改变开口大小和开口方向,即不改变a的大小.
11.已知二次函数的图像如图所示,有下列结论:①;②>0;③;④不等式<0的解集为1≤<3,正确的结论个数是( )
A.1 B.2 C.3 D.4
【答案】A
【分析】
根据抛物线的开口方向、于x轴的交点情况、对称轴的知识可判①②③的正误,再根据函数图象的特征确定出函数的解析式,进而确定不等式,最后求解不等式即可判定④.
【详解】
解:∵抛物线的开口向上,
∴a>0,故①正确;
∵抛物线与x轴没有交点
∴<0,故②错误
∵由抛物线可知图象过(1,1),且过点(3,3)
∴8a+2b=2
∴4a+b=1,故③错误;
由抛物线可知顶点坐标为(1,1),且过点(3,3)
则抛物线与直线y=x交于这两点
∴<0可化为,
根据图象,解得:1<x<3
故④错误.
故选A.
【点睛】
本题主要考查了二次函数图象的特征以及解不等式的相关知识,灵活运用二次函数图象的特征成为解答本题的关键.
12.如图,已知抛物线的图象与轴交于两点,其对称轴与轴交于点其中两点的横坐标分别为和下列说法错误的是( )
A. B.
C. D.当时,随的增大而减小
【答案】B
【解析】
【分析】
根据开口方向、对称轴、与轴交点即可分别判断符号,进而判断A选项;由两点的横坐标分别为和可得两个方程,判断B选项;由当时判断C选项;由二次函数对称轴及增减性判断D选项.
【详解】
∵开口向下,与轴交点在正半轴
∴
∵两点的横坐标分别为和
∴
∴
∴,故A选项正确,B选项错误
∵两点的横坐标分别为和
∴B点横坐标为3
∴当时,故C选项正确
∵当时,随的增大而减小
∴当时,随的增大而减小,故D选项正确
故选:B.
【点睛】
本题考查二次函数的图像和性质,重点考查二次函数系数符号与图象的关系,熟记二次函数图象性质是解题的关键.
13.如图,函数和(是常数,且)在同一平面直角坐标系的图象可能是( )
A. B. C. D.
【答案】B
【详解】分析:可先根据一次函数的图象判断a的符号,再判断二次函数图象与实际是否相符,判断正误即可.
详解:A.由一次函数y=ax﹣a的图象可得:a<0,此时二次函数y=ax2﹣2x+1的图象应该开口向下.故选项错误;
B.由一次函数y=ax﹣a的图象可得:a>0,此时二次函数y=ax2﹣2x+1的图象应该开口向上,对称轴x=﹣>0.故选项正确;
C.由一次函数y=ax﹣a的图象可得:a>0,此时二次函数y=ax2﹣2x+1的图象应该开口向上,对称轴x=﹣>0,和x轴的正半轴相交.故选项错误;
D.由一次函数y=ax﹣a的图象可得:a>0,此时二次函数y=ax2﹣2x+1的图象应该开口向上.故选项错误. 故选B.
点睛:本题考查了二次函数以及一次函数的图象,解题的关键是熟记一次函数y=ax﹣a在不同情况下所在的象限,以及熟练掌握二次函数的有关性质:开口方向、对称轴、顶点坐标等.
14.一次函数与二次函数在同一平面直角坐标系中的图象可能是( )
A. B.
C. D.
【答案】C
【分析】
逐一分析四个选项,根据二次函数图象的开口方向以及对称轴与y轴的位置关系,即可得出a、b的正负性,由此即可得出一次函数图象经过的象限,即可得出结论.
【详解】
A. ∵二次函数图象开口向下,对称轴在y轴左侧,
∴a<0,b<0,
∴一次函数图象应该过第二、三、四象限,故本选项错误;
B. ∵二次函数图象开口向上,对称轴在y轴右侧,
∴a>0,b<0,
∴一次函数图象应该过第一、三、四象限,故本选项错误;
C. ∵二次函数图象开口向下,对称轴在y轴左侧,
∴a<0,b<0,
∴一次函数图象应该过第二、三、四象限,故本选项正确;
D. ∵二次函数图象开口向下,对称轴在y轴左侧,
∴a<0,b<0,
∴一次函数图象应该过第二、三、四象限,故本选项错误.
故选C.
【点睛】
本题主要考查二次函数图象与一次函数图象的综合,掌握二次函数与一次函数系数与图象的关系,是解题的关键.
15.对于一个函数,自变量取时,函数值等于0,则称为这个函数的零点.若关于的二次函数有两个不相等的零点,关于的方程有两个不相等的非零实数根,则下列关系式一定正确的是( )
A. B. C. D.
【答案】A
【解析】
【分析】
根据根与系数的关系可以求出,的值,用作差法比较的大小关系,的大小关系,根据可求出m的取值范围,结合的大小关系,的大小关系从而得出选项.
【详解】
解:∵是的两个不相等的零点
即是的两个不相等的实数根
∴
∵
解得
∵方程有两个不相等的非零实数根
∴
∵
解得
∴>0
∴
∵,
∴
∴
∴
而由题意知
解得
当时,,;
当时,,;
当m=-2时,无意义;
当时,,
∴取值范围不确定,
故选A.
【点睛】
本题考查了一元二次方程的根与系数的关系,判别式与根的关系及一元二次方程与二次函数的关系.解题的关键是熟记根与系数的关系,对于(a≠0)的两根为,则.
16.抛物线y=ax2+bx+c(a,b,c为常数)的部分图象如图所示,设m=a-b+c,则m的取值范围是______.
【答案】
【分析】由抛物线开口方向,对称轴位置,抛物线与y轴交点位置及抛物线经过(1,0)可得a,b,c的等量关系,然后将x=-1代入解析式求解.
【详解】解:∵抛物线开口向上,
∴a>0,
∵抛物线对称轴在y轴左侧,
∴-<0,
∴b>0,
∵抛物线经过(0,-2),
∴c=-2,
∵抛物线经过(1,0),
∴a+b+c=0,
∴a+b=2,b=2-a,
∴y=ax2+(2-a)x-2,
当x=-1时,y=a+a-2-2=2a-4,
∵b=2-a>0,
∴0<a<2,
∴-4<2a-4<0,故答案为:-4<m<0.
【点睛】本题考查二次函数图象与系数的关系,解题关键是掌握二次函数的性质,掌握二次函数与方程的关系.
17.在平面直角坐标系中,若抛物线与x轴只有一个交点,则_______.
【答案】1
【分析】
根据抛物线与x轴只有一个交点可知方程=0根的判别式△=0,解方程求出k值即可得答案.
【详解】
∵抛物线与x轴只有一个交点,
∴方程=0根的判别式△=0,即22-4k=0,
解得:k=1,
故答案为:1
【点睛】
本题考查二次函数与x轴的交点问题,对于二次函数(k≠0),当判别式△>0时,抛物线与x轴有两个交点;当k=0时,抛物线与x轴有一个交点;当x<0时,抛物线与x轴没有交点;熟练掌握相关知识是解题关键.
18.已知抛物线(,,是常数),,下列四个结论:
①若抛物线经过点,则;
②若,则方程一定有根;
③抛物线与轴一定有两个不同的公共点;
④点,在抛物线上,若,则当时,.
其中正确的是__________(填写序号).
【答案】①②④
【分析】
①将代入解析式即可判定;②由b=c,可得a=-2c,cx2+bx+a=0可得cx2+cx-2c=0,则原方程可化为x2+x-2=0,则一定有根x=-2;③当b2-4ac≤0时,图像与x轴少于两个公共点,只有一个关于a,b,c的方程,故存在a、b、c使b2-4ac≤0≤0,故③错误;④若0|c|>|a|,|b|>2|a|,所以对称轴,因为a>0在对称轴左侧,函数单调递减,所以当x1
【详解】
解:∵抛物线经过点
∴,即9a-3b+c=0
∵
∴b=2a
故①正确;
∵b=c,
∴a=-2c,
∵cx2+bx+a=0
∴cx2+cx-2c=0,即x2+x-2=0
∴一定有根x=-2
故②正确;
当b2-4ac≤0时,图像与x轴少于两个公共点,只有一个关于a、b、c的方程,故存在a、b、c使b2-4ac≤0,故③错误;
若0|c|>|a|,|b|>2|a|,所以对称轴,因为a>0在对称轴左侧,函数单调递减,所以当x1
故填:①②④.
【点睛】
本题主要考查二次函数的图像与性质以及二元一次方程,灵活运用二次函数的图像与性质成为解答本题的关键.
19.已知抛物线L1:y=a(x+1)2-4(a≠0)经过点A(1,0).
(1)求抛物线L1的函数表达式.
(2)将抛物线L1向上平移m(m>0)个单位得到抛物线L2.若抛物线L2的顶点关于坐标原点O的对称点在抛物线L1上,求m的值.
(3)把抛物线L1向右平移n(n>0)个单位得到抛物线L3,若点B(1,y1),C(3,y2)在抛物线L3上,且y1>y2,求n的取值范围.
【答案】(1)
(2)的值为4
(3)
【分析】(1)把代入即可解得抛物线的函数表达式为;
(2)将抛物线向上平移个单位得到抛物线,顶点为,关于原点的对称点为,代入可解得的值为4;
(3)把抛物线向右平移个单位得抛物线为,根据点B(1,y1),C(3,y2)都在抛物线上,当y1>y2时,可得,即可解得的取值范围是.
(1)
解:把代入得:
,
解得,
;
答:抛物线的函数表达式为;
(2)
解:抛物线的顶点为,
将抛物线向上平移个单位得到抛物线,则抛物线的顶点为,
而关于原点的对称点为,
把代入得:
,
解得,
答:的值为4;
(3)
解:把抛物线向右平移个单位得到抛物线,抛物线解析式为,
点,都在抛物线上,
,
,
y1>y2,
,
整理变形得:,
,
解得,
的取值范围是.
【点睛】本题考查二次函数综合应用,涉及待定系数法,对称及平移变换等知识,解题的关键是能得出含字母的式子表达抛物线平移后的解析式.
20.设二次函数(b,c是常数)的图像与x轴交于A,B两点.
(1)若A,B两点的坐标分别为(1,0),(2,0),求函数的表达式及其图像的对称轴.
(2)若函数的表达式可以写成(h是常数)的形式,求的最小值.
(3)设一次函数(m是常数).若函数的表达式还可以写成的形式,当函数的图像经过点时,求的值.
【答案】(1),
(2)
(3)或
【分析】(1)利用待定系数法计算即可.
(2)根据等式的性质,构造以b+c为函数的二次函数,求函数最值即可.
(3)先构造y的函数,把点代入解析式,转化为的一元二次方程,解方程变形即可.
(1)由题意,二次函数(b,c是常数)经过(1,0),(2,0),
∴,
解得,
∴抛物线的解析式.
∴ 图像的对称轴是直线.
(2)由题意,得,
∵,
∴b=-4h,c=
∴,
∴当时,的最小值是.
(3)
由题意,得
因为函数y的图像经过点,
所以,
所以,或.
【点睛】本题考查了二次函数的待定系数法,二次函数的最值,对称性,熟练掌握二次函数的最值,对称性是解题的关键.
21.在平面直角坐标系xoy中,已知抛物线y=-x2+bx+c经过点A(-1,0)和点B(0,3),顶点为C,点D在其对称轴上,且位于点C下方,将线段DC绕点D按顺时针方向旋转90°,点C落在抛物线上的点P处.
(1)求抛物线的解析式;
(2)求点P的坐标;
(3)将抛物线平移,使其顶点落在原点O,这时点P落在点E的位置,在y轴上是否存在点M,使得MP+ME的值最小,若存在,求出点M的坐标;若不存在,请说明理由.
【答案】(1)
(2)
(3)存在,
【分析】(1)根据点的坐标,利用待定系数法即可得;
(2)先求出抛物线的对称轴,再设点的坐标为,则,根据旋转的性质可得,从而可得,将点代入抛物线的解析式求出的值,由此即可得;
(3)先根据点坐标的平移规律求出点,作点关于轴的对称点,连接,从而可得与轴的交点即为所求的点,再利用待定系数法求出直线的解析式,由此即可得出答案.
(1)解:将点代入得:,
解得,
则抛物线的解析式为.
(2)解:抛物线的对称轴为直线,其顶点的坐标为,
设点的坐标为,则,
由旋转的性质得:,
,即,
将点代入得:,
解得或(舍去),
当时,,
所以点的坐标为.
(3)解:抛物线的顶点的坐标为,
则将其先向左平移1个单位长度,再向下平移4个单位长度恰好落在原点,
这时点落在点的位置,且,
,即,恰好在对称轴直线上,
如图,作点关于轴的对称点,连接,
则,
由两点之间线段最短可知,与轴的交点即为所求的点,此时的值最小,即的值最小,
由轴对称的性质得:,
设直线的解析式为,
将点代入得:,
解得,
则直线的解析式为,
当时,,
故在轴上存在点,使得的值最小,此时点的坐标为.
【点睛】本题考查了求二次函数的解析式、二次函数的图象与性质、旋转的性质、点坐标的平移规律等知识点,熟练掌握待定系数法和二次函数的图象与性质是解题关键.
22.已知抛物线:()经过点.
(1)求抛物的函数表达式.
(2)将抛物线向上平移m()个单位得到抛物线.若抛物线的顶点关于坐标原点O的对称点在抛物线上,求m的值.
(3)把抛物线向右平移n()个单位得到抛物线.已知点,都在抛物线上,若当时,都有,求n的取值范围.
【答案】(1)
(2)
(3)
【分析】(1)根据待定系数法即可求解.
(2)根据平移的性质即可求解.
(3)根据平移的性质对称轴为直线,,开口向上,进而得到点P在点Q的左侧,分两种情况讨论:①当P,Q同在对称轴左侧时,②当P,Q在对称轴异侧时,③当P,Q同在对称轴右侧时即可求解.
(1)
解:将代入得:,
解得:,
∴抛物线的函数表达式:.
(2)
∵将抛物线向上平移m个单位得到抛物线,
∴抛物线的函数表达式:.
∴顶点,
∴它关于O的对称点为,
将代入抛物线得:,
∴.
(3)
把向右平移n个单位,得
:,对称轴为直线,,开口向上,
∵点,,
由得:,
∴点P在点Q的左侧,
①当P,Q同在对称轴左侧时,
,即,
∵,∴,
②当P,Q在对称轴异侧时,
∵,
∴,
解得:,
③当P,Q同在对称轴右侧时,都有(舍去),
综上所述:.
【点睛】本题考查了待定系数法求二次函数解析式、二次函数图象平移变换,熟练掌握待定系数法及平移的性质结,巧妙运用分类讨论思想是解题的关键.
相关试卷
题型九 二次函数综合题 类型十二 二次函数与圆的问题(专题训练)-中考数学二轮复习讲练测(全国通用):
这是一份题型九 二次函数综合题 类型十二 二次函数与圆的问题(专题训练)-中考数学二轮复习讲练测(全国通用),文件包含题型九二次函数综合题类型十二二次函数与圆的问题专题训练解析版docx、题型九二次函数综合题类型十二二次函数与圆的问题专题训练原卷版docx等2份试卷配套教学资源,其中试卷共76页, 欢迎下载使用。
题型九 二次函数综合题 类型十 二次函数与矩形有关的问题(专题训练)-中考数学二轮复习讲练测(全国通用):
这是一份题型九 二次函数综合题 类型十 二次函数与矩形有关的问题(专题训练)-中考数学二轮复习讲练测(全国通用),文件包含题型九二次函数综合题类型十二次函数与矩形有关的问题专题训练解析版docx、题型九二次函数综合题类型十二次函数与矩形有关的问题专题训练原卷版docx等2份试卷配套教学资源,其中试卷共32页, 欢迎下载使用。
题型九 二次函数综合题 类型三 二次函数与面积有关的问题(专题训练)-中考数学二轮复习讲练测(全国通用):
这是一份题型九 二次函数综合题 类型三 二次函数与面积有关的问题(专题训练)-中考数学二轮复习讲练测(全国通用),文件包含题型九二次函数综合题类型三二次函数与面积有关的问题专题训练解析版docx、题型九二次函数综合题类型三二次函数与面积有关的问题专题训练原卷版docx等2份试卷配套教学资源,其中试卷共49页, 欢迎下载使用。