题型十 阅读理解及定义型问题 (专题训练)-中考数学二轮复习讲练测(全国通用)
展开题型十 阅读理解及定义型问题 (专题训练)
1.(·甘肃武威市·中考真题)对于任意的有理数,如果满足,那么我们称这一对数为“相随数对”,记为.若是“相随数对”,则( )
A. B. C.2 D.3
2.(山东省菏泽市2021年中考数学真题)定义:为二次函数()的特征数,下面给出特征数为的二次函数的一些结论:①当时,函数图象的对称轴是轴;②当时,函数图象过原点;③当时,函数有最小值;④如果,当时,随的增大而减小,其中所有正确结论的序号是______.
3.(四川省雅安市2021年中考数学真题)定义:,若函数,则该函数的最大值为( )
A.0 B.2 C.3 D.4
4.(内蒙古通辽市2021年中考数学真题)定义:一次函数的特征数为,若一次函数的图象向上平移3个单位长度后与反比例函数的图象交于A,B两点,且点A,B关于原点对称,则一次函数的特征数是( )
A. B. C. D.
5.(2021·广西来宾市·中考真题)定义一种运算:,则不等式的解集是( )
A.或 B. C.或 D.或
6.(2021·湖北中考真题)定义新运算“※”:对于实数,,,,有,其中等式右边是通常的加法和乘法运算,如:.若关于的方程有两个实数根,则的取值范围是( )
A.且 B. C.且 D.
7.(广西贵港市2021年中考数学真题)我们规定:若,则.例如,则.已知,且,则的最大值是________.
8.(2021·湖北中考真题)对于任意实数a、b,定义一种运算:,若,则x的值为________.
9.(2019·常德)规定:如果一个四边形有一组对边平行,一组邻边相等,那么四边形为广义菱形.根据规定判断下面四个结论:①正方形和菱形都是广义菱形;②平行四边形是广义菱形;③对角线互相垂直,且两组邻边分别相等的四边形是广义菱形;④若M、N的坐标分别为(0,1),(0,-1),P是二次函数y=x2的图象上在第一象限内的任意一点,PQ垂直直线y=-1于点Q,则四边形PMNQ是广义菱形.其中正确的是 .(填序号)
10.(2019·陇南)定义:等腰三角形的顶角与其一个底角的度数的比值k称为这个等腰三角形的“特征值”.若等腰△ABC中,∠A=80°,则它的特征值k= .
11.(2019•济宁)阅读下面的材料:
如果函数y=f(x)满足:对于自变量x的取值范围内的任意x1,x2,
(1)若x1<x2,都有f(x1)<f(x2),则称f(x)是增函数;
(2)若x1<x2,都有f(x1)>f(x2),则称f(x)是减函数.
例题:证明函数f(x)=(x>0)是减函数.
证明:设0<x1<x2,
f(x1)–f(x2)=.
∵0<x1<x2,∴x2–x1>0,x1x2>0.
∴>0.即f(x1)–f(x2)>0.
∴f(x1)>f(x2),∴函数f(x)═(x>0)是减函数.
根据以上材料,解答下面的问题:
已知函数f(x)=+x(x<0),
f(–1)=+(–1)=0,f(–2)=+(–2)=–.
(1)计算:f(–3)=__________,f(–4)=__________;
(2)猜想:函数f(x)=+x(x<0)是__________函数(填“增”或“减”);
(3)请仿照例题证明你的猜想.
12.(2022·四川凉山)阅读材料:
材料1:若关于x的一元二次方程ax2+bx+c=0(a≠0)的两个根为x1,x2,则x1+x2=,x1x2=
材料2:已知一元二次方程x2-x-1=0的两个实数根分别为m,n,求m2n+mn2的值.
解:∵一元二次方程x2-x-1=0的两个实数根分别为m,n,
∴m+n=1,mn=-1,
则m2n+mn2=mn(m+n)=-1×1=-1
根据上述材料,结合你所学的知识,完成下列问题:
(1)材料理解:一元二次方程2x2-3x-1=0的两个根为x1,x2,则x1+x2= ;x1x2= .
(2)类比应用:已知一元二次方程2x2-3x-1=0的两根分别为m、n,求的值.
(3)思维拓展:已知实数s、t满足2s2-3s-1=0,2t2-3t-1=0,且s≠t,求的值.
13.(2019•随州)若一个两位数十位、个位上的数字分别为m,n,我们可将这个两位数记为,易知=10m+n;同理,一个三位数、四位数等均可以用此记法,如=100a+10b+c.
【基础训练】
(1)解方程填空:
①若+=45,则x=__________;
②若–=26,则y=__________;
③若+=,则t=__________;
【能力提升】
(2)交换任意一个两位数的个位数字与十位数字,可得到一个新数,则+一定能被__________整除,–一定能被__________整除,•–mn一定能被__________整除;(请从大于5的整数中选择合适的数填空)
【探索发现】
(3)北京时间2019年4月10日21时,人类拍摄的首张黑洞照片问世,黑洞是一种引力极大的天体,连光都逃脱不了它的束缚.数学中也存在有趣的黑洞现象:任选一个三位数,要求个、十、百位的数字各不相同,把这个三位数的三个数字按大小重新排列,得出一个最大的数和一个最小的数,用得出的最大的数减去最小的数得到一个新数(例如若选的数为325,则用532–235=297),再将这个新数按上述方式重新排列,再相减,像这样运算若干次后一定会得到同一个重复出现的数,这个数称为“卡普雷卡尔黑洞数”.
①该“卡普雷卡尔黑洞数”为__________;
②设任选的三位数为(不妨设a>b>c),试说明其均可产生该黑洞数.
14.(2021·北京中考真题)在平面直角坐标系中,的半径为1,对于点和线段,给出如下定义:若将线段绕点旋转可以得到的弦(分别是的对应点),则称线段是的以点为中心的“关联线段”.
(1)如图,点的横、纵坐标都是整数.在线段中,的以点为中心的“关联线段”是______________;
(2)是边长为1的等边三角形,点,其中.若是的以点为中心的“关联线段”,求的值;
(3)在中,.若是的以点为中心的“关联线段”,直接写出的最小值和最大值,以及相应的长.
15.(江苏省南通市2021年中考数学试题)定义:若一个函数图象上存在横、纵坐标相等的点,则称该点为这个函数图象的“等值点”.例如,点是函数的图象的“等值点”.
(1)分别判断函数的图象上是否存在“等值点”?如果存在,求出“等值点”的坐标;如果不存在,说明理由;
(2)设函数的图象的“等值点”分别为点A,B,过点B作轴,垂足为C.当的面积为3时,求b的值;
(3)若函数的图象记为,将其沿直线翻折后的图象记为.当两部分组成的图象上恰有2个“等值点”时,直接写出m的取值范围.
16.(2019·衢州)定义:在平面直角坐标系中,对于任意两点A(a,b),B(c,d),若点T(x,y)满是x=,y=,那么称点T是点A,B的融合点。
例如:A(-1,8),B(4,一2),当点T(x.y)满是x==1,y==2时.则点T(1,2)是点A,B的融合点。
(1)已知点A(-1,5),B(7,7).C(2,4)。请说明其中一个点是另外两个点的融合点.
(2)如图,点D(3,0).点E(t,2t+3)是直线l上任意一点,点T(x,y)是点D,E的融合点.
①试确定y与x的关系式.
②若直线ET交x轴于点H,当△DTH为直角三角形时,求点E的坐标.
17.(2019·金华)如图,在平面直角坐标系中,正方形OABC的边长为4,边OA,OC分别在x轴,y轴的正半轴上,把正方形OABC的内部及边上,横、纵坐标均为整数的点称为好点.点P为抛物线y=-(x-2)2+m+2的顶点.
(1)当m=0时,求该抛物线下放(包括边界)的好点个数.
(2)当m=3时,求该抛物线上的好点坐标.
(3)若点P在正方形OABC内部,该抛物线下方(包括边界)恰好存在8个好点,求m的取值范围.
18.(2019 ·扬州)如图,平面内的两条直线、,点,在直线上,点、在直线上,过、两点分别作直线的垂线,垂足分別为,,我们把线段叫做线段在直线上的正投影,其长度可记作或,特别地线段在直线上的正投影就是线段.
请依据上述定义解决如下问题:
(1)如图1,在锐角中,,,则 ;
(2)如图2,在中,,,,求的面积;
(3)如图3,在钝角中,,点在边上,,,,求,
19.(2022·山西·中考真题)阅读与思考
下面是小宇同学的数学小论文,请仔细阅读并完成相应的任务
用函数观点认识一元二次方程根的情况
我们知道,一元二次方程的根就是相应的二次函数的图象(称为抛物线)与x轴交点的横坐标.抛物线与x轴的交点有三种情况:有两个交点、有一个交点、无交点.与此相对应,一元二次方程的根也有三种情况:有两个不相等的实数根、有两个相等的实数根、无实数根.因此可用抛物线与x轴的交点个数确定一元二次方程根的情况
下面根据抛物线的顶点坐标(,)和一元二次方程根的判别式,分别分和两种情况进行分析:
(1)时,抛物线开口向上.
①当时,有.∵,∴顶点纵坐标.
∴顶点在x轴的下方,抛物线与x轴有两个交点(如图1).
②当时,有.∵,∴顶点纵坐标.
∴顶点在x轴上,抛物线与x轴有一个交点(如图2).
∴一元二次方程有两个相等的实数根.
③当时,
……
(2)时,抛物线开口向下.
……
任务:
(1)上面小论文中的分析过程,主要运用的数学思想是 (从下面选项中选出两个即可);
A.数形结合
B.统计思想
C.分类讨论.
D.转化思想
(2)请参照小论文中当时①②的分析过程,写出③中当时,一元二次方程根的情况的分析过程,并画出相应的示意图;
(3)实际上,除一元二次方程外,初中数学还有一些知识也可以用函数观点来认识,例如:可用函数观点来认识一元一次方程的解.请你再举出一例为
20.(2022·浙江嘉兴)6月13日,某港口的潮水高度y()和时间x(h)的部分数据及函数图象如下:
x(h) | … | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | … |
y() | … | 189 | 137 | 103 | 80 | 101 | 133 | 202 | 260 | … |
(数据来自某海洋研究所)
(1)数学活动:①根据表中数据,通过描点、连线(光滑曲线)的方式补全该函数的图象.
②观察函数图象,当时,y的值为多少?当y的值最大时,x的值为多少?
(2)数学思考:请结合函数图象,写出该函数的两条性质或结论.
(3)数学应用:根据研究,当潮水高度超过260时,货轮能够安全进出该港口.请问当天什么时间段适合货轮进出此港口?
21.(2019·甘肃天水)如图1,对角线互相垂直的四边形叫做垂美四边形.
(1)概念理解:如图2,在四边形ABCD中,AB=AD,CB=CD,问四边形ABCD是垂美四边形吗?请说明理由;
(2)性质探究:如图1,四边形ABCD的对角线AC、BD交于点O,AC⊥BD.
试证明:AB2+CD2=AD2+BC2;
(3)解决问题:如图3,分别以Rt△ACB的直角边AC和斜边AB为边向外作正方形ACFG和正方形ABDE,连结CE、BG、GE.已知AC=4,AB=5,求GE的长.
题型十 阅读理解及定义型问题(复习讲义)-备战2024年中考数学二轮复习高分突破(全国通用): 这是一份题型十 阅读理解及定义型问题(复习讲义)-备战2024年中考数学二轮复习高分突破(全国通用),文件包含题型十阅读理解及定义型问题复习讲义原卷版docx、题型十阅读理解及定义型问题复习讲义解析版docx等2份试卷配套教学资源,其中试卷共26页, 欢迎下载使用。
题型十 阅读理解及定义型问题 (专题训练)-备战2024年中考数学二轮复习高分突破(全国通用): 这是一份题型十 阅读理解及定义型问题 (专题训练)-备战2024年中考数学二轮复习高分突破(全国通用),文件包含题型十阅读理解及定义型问题专题训练原卷版docx、题型十阅读理解及定义型问题专题训练解析版docx等2份试卷配套教学资源,其中试卷共45页, 欢迎下载使用。
重难点01+规律探究与新定义型问题(2类型+10题型)-2024年中考数学一轮复习讲练测(全国通用): 这是一份重难点01+规律探究与新定义型问题(2类型+10题型)-2024年中考数学一轮复习讲练测(全国通用),共21页。试卷主要包含了数式规律,图形规律等内容,欢迎下载使用。