山东省青岛地区2022-2023学年高一数学下学期期中考试试卷(Word版附答案)
展开
这是一份山东省青岛地区2022-2023学年高一数学下学期期中考试试卷(Word版附答案),共10页。试卷主要包含了04等内容,欢迎下载使用。
2022—2023学年度第二学期期中学业水平检测 高一数学试题 2023.04本试卷共4页,22题.全卷满分150分.考试用时120分钟.注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上,并将条形码粘贴在答题卡指定位置上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。3.考试结束后,请将答题卡上交。 一、单项选择题:本大题共8小题.每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知复数,则的虚部是 A. B. C. D. 2.已知向量,,若与垂直,则实数的值为 A. B. C. D.3.如图所示,在三棱台中,沿平面截去三棱锥,则剩余的部分是 A.三棱锥 B.四棱锥 C.三棱柱 D.三棱台 4.在中,内角的对边分别为,,,,则 A. B. C. D.或5.已知,,复数,,在复平面内对应的点为,若三点共线,则的最小值为 A. B. C. D.6.在矩形中,,分别为,的中点,若,则 A. B. C. D.7.在中,为角的平分线,若,,则等于 A. B. C. D. 8.在中,内角的对边分别为,,则的取值范围为 A. B. C. D. 二、多项选择题:本大题共4小题.每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,选对但不全的得2分,有选错的得0分. 9.若复数满足,则 A. B.是纯虚数 C. D.若是关于的实系数方程的一个复数根,则10.下列说法正确的是 A.向量,能作为平面内所有向量的一组基底 B.已知中,点为边的中点,则必有 C.若,则是的垂心 D.若是的重心,则点满足条件11.在中,内角的对边分别为,则下列说法正确的是 A.若,则为等腰三角形 B.若,则为等腰或直角三角形 C.若为锐角三角形,则 D.若,,,则有两解12.已知函数在上单调,且的图象关于点对称,则 A.的周期为 B.若,则 C.将的图象向右平移个单位长度后对应的函数为奇函数 D.函数在上有个零点三、填空题:本大题共4小题,每小题5分,共20分. 13.如图所示,等腰直角三角形是水平放置的一个平面图形的直观图,其中,则原图形的周长为 . 14.已知向量满足,,,则向量的夹角为 . 15. . 16.某公园有一个人工湖,若要测量如图所示的人工湖的口径两点间的距离,现在人工湖岸边取两点,测得,,,,则 . 四、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知都是锐角,,.(1)求和的值;(2)求的值. 18.(12分)已知半圆圆心为,直径,为半圆弧上靠近点的三等分点,若为半径上的动点,以点为坐标原点,所在的直线为轴,建立平面直角坐标系,如图所示.(1)求在上投影向量的坐标;(2)若,当取得最小值时,求点的坐标及的最小值. 19.(12分)在复平面内,是原点,向量对应的复数.(1)若点位于第四象限,求的取值范围;(2)若点关于实轴的对称点为点,求向量对应的复数;(3)若,且,求的取值范围. 20.(12分)在“①;②;③”这三个条件中任选一个,补充在下面的问题中,并进行解答.问题:在中,内角的对边分别为,且_______.(1)求角;(2)若的内切圆半径,,求的外接圆半径. 21.(12分)已知向量,,记函数.(1)将化为形式,并求最小正周期;(2)求函数在区间上的值域;(3)将函数的图象向右平移个单位后,再将所得图象上各点的横坐标缩短到原来的倍得到函数的图象,若在区间上至少有个最大值,求的取值范围. 22.(12分)对于函数,若存在非零常数,使得对任意的,都有成立,我们称函数为“函数”;对于函数,若存在非零常数,使得对任意的,都有成立,我们称函数为“严格函数”.(1)求证:,是“函数”;(2)若函数,是“函数”,求的取值范围;(3)对于定义域为的函数对任意的正实数,均是“严格函数”,若,求实数的最小值.
2022—2023学年度第二学期期中学业水平检测高一数学答案 一、单项选择题:本大题共8小题.每小题5分,共40分.1-8:A D B C B D C D 二、多项选择题:本大题共4小题.每小题5分,共20分.9.ACD; 10.BC; 11.CD; 12.BCD.三、填空题:本大题共4小题,每小题5分,共20分.13.; 14.; 15.; 16..四、解答题:本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.17.(10分)解:(1)由题意知,··················································2分因为是锐角,,所以···················································3分所以,所以··························································5分所以·······························································6分(2)因为都是锐角,所以因为,所以.·························································8分故··································································10分18. (12分)解:(1)由题意得,,,则,即·····························································2分设,所以所以在上的投影向量为,所以在上的投影向量的坐标为············································4分(2)设,由(1)知,,故,·······························································7分所以······························································10分又因为,所以当时,有最小值为·········································11分此时点的坐标为······················································12分 19.(12分)解: (1)由题意得,,因为点位于第四象限,所以所以.···························································3分(2)由题意得,,所以向量,所以向量对应的复数为··························6分(3)因为,所以,所以,··································································10分因为,所以·························································12分 20.(12分)解:(1)选择①:由已知得,,所以,在中,,所以························································6分选择②:由,得,则由余弦定理得:,由正弦定理得:,则,因为,则,所以.又因为,所以························································6分选择③:由已知及正弦定理得,所以,所以,因为,所以··························································6分(2)由余弦定理得,①由面积相等得.即,整理得,②联立①②,解得······················································10分所以,所以·························································12分21.(12分)解:(1)由题意得,,所以最小正周期为·····················································4分(2)当时,,,所以·······························································7分(3)将函数的图象向右平移个单位,可得的图象;再将所得图象上各点的横坐标缩短到原来的倍,得到的图象.如果在区间上至少有个最大值,则在区间上至少有个最大值,在上至少有个最大值,故区间上至少有个周期长度,在上至少有个周期长度··························10分即,所以,即,所以,故实数的范围为······················································12分 22. (12分)解:(1)证明:取非零常数,对任意的,则,所以,是“函数”·····················································3分(2)因为函数是“函数”,,所以,即,整理得,因为,所以,即,故···················································7分(3)因为,对任意的正实数,都有,所以在上为减函数·····················································8分所以,即····························································9分设,则,···············································11分所以实数的最小值为··················································12分
相关试卷
这是一份山东省青岛地区2022-2023学年高二数学下学期期中考试试题(Word版附解析),共22页。试卷主要包含了考试结束后,请将答题卡上交, 在的展开式中,则等内容,欢迎下载使用。
这是一份山东省青岛市西海岸新区2022-2023学年高一数学下学期期中试题(Word版附解析),共19页。
这是一份山东省青岛市平度市2022-2023学年高一数学下学期期末试题(Word版附解析),共21页。试卷主要包含了07, 已知,,则=, 已知,,则, 已知向量,,,则等内容,欢迎下载使用。