年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    山东省青岛地区2022-2023学年高一数学下学期期中考试试卷(Word版附答案)

    山东省青岛地区2022-2023学年高一数学下学期期中考试试卷(Word版附答案)第1页
    山东省青岛地区2022-2023学年高一数学下学期期中考试试卷(Word版附答案)第2页
    山东省青岛地区2022-2023学年高一数学下学期期中考试试卷(Word版附答案)第3页
    还剩7页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    山东省青岛地区2022-2023学年高一数学下学期期中考试试卷(Word版附答案)

    展开

    这是一份山东省青岛地区2022-2023学年高一数学下学期期中考试试卷(Word版附答案),共10页。试卷主要包含了04等内容,欢迎下载使用。
    2022—2023学年度第学期期中学业水平检测            一数学试题         2023.04本试卷共4页,22题.全卷满分150分.考试用时120分钟.注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上,并将条形码粘贴在答题卡指定位置上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。3.考试结束后,请将答题卡上交。 一、单项选择题:本大题共8小题.每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1已知复数,则的虚部是  A B C D 2已知向量,若垂直,则实数的值为  A B C D3如图所示,在三棱台中,沿平面截去三棱锥,则剩余的部分是  A.三棱锥   B.四棱锥   C.三棱柱   D三棱台 4中,内角的对边分别为,则  A B C D5已知,复数在复平面内对应的点为三点共线,则的最小值为 A B C D6在矩形中,分别为的中点,若,则 A B C D7中,为角的平分线,若,则等于  A B C D  8中,内角的对边分别为的取值范围为  A  B   C  D 二、多项选择题:本大题共4小题.每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求全部选对的得5分,选对但不全的得2分,有选错的得0 9若复数满足,则 A  B是纯虚数 C D是关于的实系数方程的一个复数根,则10下列说法正确的是 A.向量能作为平面内所有向量的一组基底 B.已知中,的中点,则必有 C.若,则的垂心 D.若的重心,则点满足条件11中,内角的对边分别为则下列说法正确的是 A.若,则为等腰三角形 B.若,则为等腰或直角三角形 C.若为锐角三角形,则 D.若,则有两解12已知函数上单调,且的图象关于点对称,则 A周期为  B.若 C.将的图象向右平移个单位长度后对应的函数为函数 D.函数上有个零点三、填空题:本大题共4小题,每小题5分,共20分. 13如图所示,等腰直角三角形是水平放置的一个平面图形的直观图,其中,则原图形的周长为         14已知向量满足则向量的夹角为          15          16某公园有一个人工湖,若要测量如图所示的人工湖的口径两点间的距离,现在人工湖岸边两点,测得,则            四、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.  17.(10分)已知都是锐角,1的值;2)求的值.  18.(12分)已知半圆圆心为,直径为半圆弧上靠近点的三等分点,若为半径上的动点,以点为坐标原点所在的直线为轴,建立平面直角坐标系,如图所示.1)求上投影向量的坐标;2)若,当取得最小值时,求点的坐标及的最小值.   19.(12分)在复平面内,是原点,向量对应的复数1)若点位于第四象限,求的取值范围;2)若点关于实轴的对称点为点,求向量对应的复数;3)若,且,求的取值范围. 20.(12分);②这三个条件中任选一个,补充在下面的问题中,并进行解答.问题:在中,内角的对边分别为,且_______1)求角2)若的内切圆半径,求的外接圆半径 21.(12分)已知向量,记函数1化为形式,并求最小正周期2)求函数在区间上的值域;3)将函数图象向右平移个单位,再将所得图象上各点的横坐标缩短到原来的倍得到函数的图象,若在区间上至少有个最大值,求的取值范围.  22.(12分)对于函数,若存在非零常数,使得对任意的,都有成立,我们称函数为“函数”;对于函数,若存在非零常数,使得对任意的,都有成立,我们称函数为“严格函数”.1)求证:是“函数”2)若函数是“函数”,求的取值范围;3)对于定义域为的函数对任意的正实数均是“严格函数”,若,求实数最小值.
    2022—2023学年度第学期期中学业水平检测高一数学答案 一、单项选择题:本大题共8小题.每小题5分,共40分.1-8A D B C     B D C D  二、多项选择题:本大题共4小题.每小题5分,共20分.9ACD     10BC     11CD     12BCD.三、填空题:本大题共4小题,每小题5分,共20分.13     14     15     16.四、解答题:本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.17.(10分)解:1由题意知··················································2是锐角,,所以···················································3所以所以··························································5所以·······························································62)因为都是锐角,所以因为所以.·························································8··································································1018. 12分)解:1)由题意,即·····························································2所以所以上的投影向量为所以上的投影向量的坐标为············································42)设,由(1)知,·······························································7所以······························································10因为所以时,有最小值为·········································11此时点的坐标为······················································12 19.(12分)解: 1由题意得,,因为点位于第四象限,所以所以.···························································32由题意得,,所以向量,所以向量对应的复数为··························63因为,所以,所以··································································10因为,所以·························································12 20.(12分)解:1)选择①:由已知得,所以中,,所以························································6选择②:由,得则由余弦定理得:由正弦定理得:因为,则,所以又因为,所以························································6选择③:由已知及正弦定理得所以,所以因为,所以··························································62)由余弦定理得,①由面积相等得.即整理得,②联立①②,解得······················································10所以,所以·························································1221.(12分)解:1)由题意得,所以最小正周期为·····················································42)当时,所以·······························································73)将函数的图象向右平移个单位,可得的图象;再将所得图象上各点的横坐标缩短到原来的倍,得到的图象.如果在区间上至少有个最大值,在区间上至少有个最大值,在上至少有个最大值,故区间上至少有个周期长度,在上至少有个周期长度··························10,所以,即,所以故实数的范围为······················································12 22. 12分)解:1)证明:取非零常数,对任意的,则所以是“函数”·····················································32)因为函数是“函数”,所以,即整理得因为,所以,即,故···················································73)因为,对任意的正实数,都有所以上为减函数·····················································8所以,即····························································9,则···············································11所以实数的最小值为··················································12 
      

    相关试卷

    山东省青岛地区2022-2023学年高二数学下学期期中考试试题(Word版附解析):

    这是一份山东省青岛地区2022-2023学年高二数学下学期期中考试试题(Word版附解析),共22页。试卷主要包含了考试结束后,请将答题卡上交, 在的展开式中,则等内容,欢迎下载使用。

    山东省青岛市西海岸新区2022-2023学年高一数学下学期期中试题(Word版附解析):

    这是一份山东省青岛市西海岸新区2022-2023学年高一数学下学期期中试题(Word版附解析),共19页。

    山东省青岛市平度市2022-2023学年高一数学下学期期末试题(Word版附解析):

    这是一份山东省青岛市平度市2022-2023学年高一数学下学期期末试题(Word版附解析),共21页。试卷主要包含了07, 已知,,则=, 已知,,则, 已知向量,,,则等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map