|试卷下载
终身会员
搜索
    上传资料 赚现金
    2022年河南省中考数学试卷(解析版)
    立即下载
    加入资料篮
    2022年河南省中考数学试卷(解析版)01
    2022年河南省中考数学试卷(解析版)02
    2022年河南省中考数学试卷(解析版)03
    还剩26页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年河南省中考数学试卷(解析版)

    展开
    这是一份2022年河南省中考数学试卷(解析版),共29页。试卷主要包含了填空题,解答题等内容,欢迎下载使用。

    2022年河南省中考数学试卷
    一、选择题(每小题3分,共30分)下列各小题均有四个选项,其中只有一个是正确的.
    1.(3分)的相反数是(  )
    A. B.2 C.﹣2 D.
    2.(3分)2022年北京冬奥会的奖牌“同心”表达了“天地合•人心同”的中华文化内涵.将这六个汉字分别写在某正方体的表面上,如图是它的一种展开图,则在原正方体中,与“地”字所在面相对的面上的汉字是(  )

    A.合 B.同 C.心 D.人
    3.(3分)如图,直线AB,CD相交于点O,EO⊥CD,垂足为O.若∠1=54°,则∠2的度数为(  )

    A.26° B.36° C.44° D.54°
    4.(3分)下列运算正确的是(  )
    A.2﹣=2 B.(a+1)2=a2+1
    C.(a2)3=a5 D.2a2•a=2a3
    5.(3分)如图,在菱形ABCD中,对角线AC,BD相交于点O,点E为CD的中点.若OE=3,则菱形ABCD的周长为(  )

    A.6 B.12 C.24 D.48
    6.(3分)一元二次方程x2+x﹣1=0的根的情况是(  )
    A.有两个不相等的实数根 B.没有实数根
    C.有两个相等的实数根 D.只有一个实数根
    7.(3分)如图所示的扇形统计图描述了某校学生对课后延时服务的打分情况(满分5分),则所打分数的众数为(  )

    A.5分 B.4分 C.3分 D.45%
    8.(3分)《孙子算经》中记载:“凡大数之法,万万曰亿,万万亿曰兆.”说明了大数之间的关系:1亿=1万×1万,1兆=1万×1万×1亿.则1兆等于(  )
    A.108 B.1012 C.1016 D.1024
    9.(3分)如图,在平面直角坐标系中,边长为2的正六边形ABCDEF的中心与原点O重合,AB∥x轴,交y轴于点P.将△OAP绕点O顺时针旋转,每次旋转90°,则第2022次旋转结束时,点A的坐标为(  )

    A.(,﹣1) B.(﹣1,﹣) C.(﹣,﹣1) D.(1,)
    10.(3分)呼气式酒精测试仪中装有酒精气体传感器,可用于检测驾驶员是否酒后驾车.酒精气体传感器是一种气敏电阻(图1中的R1),R1的阻值随呼气酒精浓度K的变化而变化(如图2),血液酒精浓度M与呼气酒精浓度K的关系见图3.下列说法不正确的是(  )

    A.呼气酒精浓度K越大,R1的阻值越小
    B.当K=0时,R1的阻值为100
    C.当K=10时,该驾驶员为非酒驾状态
    D.当R1=20时,该驾驶员为醉驾状态
    二、填空题(每小题3分,共15分)
    11.(3分)请写出一个y随x的增大而增大的一次函数的表达式:   .
    12.(3分)不等式组的解集为    .
    13.(3分)为开展“喜迎二十大、永远跟党走、奋进新征程”主题教育宣讲活动,某单位从甲、乙、丙、丁四名宣讲员中随机选取两名进行宣讲,则恰好选中甲和丙的概率为    .
    14.(3分)如图,将扇形AOB沿OB方向平移,使点O移到OB的中点O′处,得到扇形A′O′B′.若∠O=90°,OA=2,则阴影部分的面积为    .

    15.(3分)如图,在Rt△ABC中,∠ACB=90°,AC=BC=2,点D为AB的中点,点P在AC上,且CP=1,将CP绕点C在平面内旋转,点P的对应点为点Q,连接AQ,DQ.当∠ADQ=90°时,AQ的长为    .

    三、解答题(本大题共8个小题,共75分)
    16.(10分)(1)计算:﹣()0+2﹣1;
    (2)化简:÷(1﹣).
    17.(9分)2022年3月23日下午,“天宫课堂”第二课在中国空间站开讲,神舟十三号乘组航天员翟志刚、王亚平、叶光富相互配合进行授课,这是中国空间站的第二次太空授课,被许多中小学生称为“最牛网课”.某中学为了解学生对“航空航天知识”的掌握情况,随机抽取50名学生进行测试,并对成绩(百分制)进行整理,信息如下:
    a.成绩频数分布表:
    成绩x(分)
    50≤x<60
    60≤x<70
    70≤x<80
    80≤x<90
    90≤x≤100
    频数
    7
    9
    12
    16
    6
    b.成绩在70≤x<80这一组的是(单位:分):
    70 71 72 72 74 77 78 78 78 79 79 79
    根据以上信息,回答下列问题:
    (1)在这次测试中,成绩的中位数是    分,成绩不低于80分的人数占测试人数的百分比为    .
    (2)这次测试成绩的平均数是76.4分,甲的测试成绩是77分.乙说:“甲的成绩高于平均数,所以甲的成绩高于一半学生的成绩.”你认为乙的说法正确吗?请说明理由.
    (3)请对该校学生“航空航天知识”的掌握情况作出合理的评价.
    18.(9分)如图,反比例函数y=(x>0)的图象经过点A(2,4)和点B,点B在点A的下方,AC平分∠OAB,交x轴于点C.
    (1)求反比例函数的表达式.
    (2)请用无刻度的直尺和圆规作出线段AC的垂直平分线.(要求:不写作法,保留作图痕迹)
    (3)线段OA与(2)中所作的垂直平分线相交于点D,连接CD.求证:CD∥AB.

    19.(9分)开封清明上河图是依照北宋著名画家张择端的《清明上河图》建造的,拂云阁是园内最高的建筑.某数学小组测量拂云阁DC的高度,如图,在A处用测角仪测得拂云阁顶端D的仰角为34°,沿AC方向前进15m到达B处,又测得拂云阁顶端D的仰角为45°.已知测角仪的高度为1.5m,测量点A,B与拂云阁DC的底部C在同一水平线上,求拂云阁DC的高度(结果精确到1m.参考数据:sin34°≈0.56,cos34°≈0.83,tan34°≈0.67).

    20.(9分)近日,教育部印发《义务教育课程方案》和课程标准(2022年版),将劳动从原来的综合实践活动课程中独立出来.某中学为了让学生体验农耕劳动,开辟了一处耕种园,需要采购一批菜苗开展种植活动.据了解,市场上每捆A种菜苗的价格是菜苗基地的倍,用300元在市场上购买的A种菜苗比在菜苗基地购买的少3捆.
    (1)求菜苗基地每捆A种菜苗的价格.
    (2)菜苗基地每捆B种菜苗的价格是30元.学校决定在菜苗基地购买A,B两种菜苗共100捆,且A种菜苗的捆数不超过B种菜苗的捆数.菜苗基地为支持该校活动,对A,B两种菜苗均提供九折优惠.求本次购买最少花费多少钱.
    21.(9分)小红看到一处喷水景观,喷出的水柱呈抛物线形状,她对此展开研究:测得喷水头P距地面0.7m,水柱在距喷水头P水平距离5m处达到最高,最高点距地面3.2m;建立如图所示的平面直角坐标系,并设抛物线的表达式为y=a(x﹣h)2+k,其中x(m)是水柱距喷水头的水平距离,y(m)是水柱距地面的高度.
    (1)求抛物线的表达式.
    (2)爸爸站在水柱正下方,且距喷水头P水平距离3m.身高1.6m的小红在水柱下方走动,当她的头顶恰好接触到水柱时,求她与爸爸的水平距离.

    22.(10分)为弘扬民族传统体育文化,某校将传统游戏“滚铁环”列入了校运动会的比赛项目.滚铁环器材由铁环和推杆组成.小明对滚铁环的启动阶段进行了研究,如图,滚铁环时,铁环⊙O与水平地面相切于点C,推杆AB与铅垂线AD的夹角为∠BAD,点O,A,B,C,D在同一平面内.当推杆AB与铁环⊙O相切于点B时,手上的力量通过切点B传递到铁环上,会有较好的启动效果.

    (1)求证:∠BOC+∠BAD=90°.
    (2)实践中发现,切点B只有在铁环上一定区域内时,才能保证铁环平稳启动.图中点B是该区域内最低位置,此时点A距地面的距离AD最小,测得cos∠BAD=.已知铁环⊙O的半径为25cm,推杆AB的长为75cm,求此时AD的长.
    23.(10分)综合与实践
    综合与实践课上,老师让同学们以“矩形的折叠”为主题开展数学活动.
    (1)操作判断
    操作一:对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展平;
    操作二:在AD上选一点P,沿BP折叠,使点A落在矩形内部点M处,把纸片展平,连接PM,BM.
    根据以上操作,当点M在EF上时,写出图1中一个30°的角:   .
    (2)迁移探究
    小华将矩形纸片换成正方形纸片,继续探究,过程如下:
    将正方形纸片ABCD按照(1)中的方式操作,并延长PM交CD于点Q,连接BQ.
    ①如图2,当点M在EF上时,∠MBQ=   °,∠CBQ=   °;
    ②改变点P在AD上的位置(点P不与点A,D重合),如图3,判断∠MBQ与∠CBQ的数量关系,并说明理由.
    (3)拓展应用
    在(2)的探究中,已知正方形纸片ABCD的边长为8cm,当FQ=1cm时,直接写出AP的长.


    2022年河南省中考数学试卷
    参考答案与试题解析
    一、选择题(每小题3分,共30分)下列各小题均有四个选项,其中只有一个是正确的.
    1.(3分)的相反数是(  )
    A. B.2 C.﹣2 D.
    【分析】直接利用相反数的定义得出即可.
    【解答】解:的相反数是:.
    故选:A.
    【点评】此题主要考查了相反数的概念,正确把握相反数的定义是解题关键.
    2.(3分)2022年北京冬奥会的奖牌“同心”表达了“天地合•人心同”的中华文化内涵.将这六个汉字分别写在某正方体的表面上,如图是它的一种展开图,则在原正方体中,与“地”字所在面相对的面上的汉字是(  )

    A.合 B.同 C.心 D.人
    【分析】根据正方体的表面展开图找相对面的方法,一线隔一个,即可解答.
    【解答】解:在原正方体中,与“地”字所在面相对的面上的汉字是人,
    故选:D.
    【点评】本题考查了正方体相对两个面上的问题,熟练掌握根据正方体的表面展开图找相对面的方法是解题的关键.
    3.(3分)如图,直线AB,CD相交于点O,EO⊥CD,垂足为O.若∠1=54°,则∠2的度数为(  )

    A.26° B.36° C.44° D.54°
    【分析】首先利用垂直的定义得到∠COE=90°,然后利用平角的定义即可求解.
    【解答】解:∵EO⊥CD,
    ∴∠COE=90°,
    ∵∠1+∠COE+∠2=180°,
    ∴∠2=180°﹣∠1﹣∠COE=180°﹣54°﹣90°=36°.
    故选:B.
    【点评】本题主要考查了垂直的定义和平角的性质计算,要注意领会由垂直得直角这一要点.
    4.(3分)下列运算正确的是(  )
    A.2﹣=2 B.(a+1)2=a2+1
    C.(a2)3=a5 D.2a2•a=2a3
    【分析】利用二次根式的减法的法则,完全平方公式,幂的乘方的法则,单项式乘单项式的法则对各项进行运算即可.
    【解答】解:A、,故A不符合题意;
    B、(a+1)2=a2+2a+1,故B不符合题意;
    C、(a2)3=a6,故C不符合题意;
    D、2a2•a=2a3,故D符合题意.
    故选:D.
    【点评】本题主要考查二次根式的化简,完全平方公式,幂的乘方,单项式乘单项式,解答的关键是对相应的运算法则的掌握.
    5.(3分)如图,在菱形ABCD中,对角线AC,BD相交于点O,点E为CD的中点.若OE=3,则菱形ABCD的周长为(  )

    A.6 B.12 C.24 D.48
    【分析】由菱形的性质可得出AC⊥BD,AB=BC=CD=DA,再根据直角三角形斜边上的中线等于斜边的一半得出CD的长,结合菱形的周长公式即可得出结论.
    【解答】解:∵四边形ABCD为菱形,
    ∴AC⊥BD,AB=BC=CD=DA,
    ∴△COD为直角三角形.
    ∵OE=3,点E为线段CD的中点,
    ∴CD=2OE=6.
    ∴C菱形ABCD=4CD=4×6=24.
    故选:C.
    【点评】本题考查了菱形的性质以及直角三角形的性质,解题的关键是求出CD=6.
    6.(3分)一元二次方程x2+x﹣1=0的根的情况是(  )
    A.有两个不相等的实数根 B.没有实数根
    C.有两个相等的实数根 D.只有一个实数根
    【分析】根据根的判别式进行判断即可.
    【解答】解:在一元二次方程x2+x﹣1=0中,
    a=1,b=1,c=﹣1,
    ∴Δ=b2﹣4ac=12﹣4×1×(﹣1)=1+4=5>0,
    ∴原方程有两个不相等的实数根.
    故选:A.
    【点评】本题主要考查根的判别式,解答的关键是明确当Δ<0时,原方程没有实数根;当Δ=0时,原方程有两个相等的实数根;当Δ>0时,原方程有两个不相等的实数根.
    7.(3分)如图所示的扇形统计图描述了某校学生对课后延时服务的打分情况(满分5分),则所打分数的众数为(  )

    A.5分 B.4分 C.3分 D.45%
    【分析】根据众数的定义求解即可.
    【解答】解:由扇形统计图知,得4分的人数占总人数的45%,人数最多,
    所以所打分数的众数为4分,
    故选:B.
    【点评】本题主要考查众数,求一组数据的众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据.
    8.(3分)《孙子算经》中记载:“凡大数之法,万万曰亿,万万亿曰兆.”说明了大数之间的关系:1亿=1万×1万,1兆=1万×1万×1亿.则1兆等于(  )
    A.108 B.1012 C.1016 D.1024
    【分析】根据同底数幂的乘法先求出1亿,再求1兆即可.
    【解答】解:1亿=104×104
    =108,
    1兆=104×104×108
    =104+4+8
    =1016,
    故选:C.
    【点评】本题考查了科学记数法﹣表示较大的数,掌握am•an=am+n是解题的关键.
    9.(3分)如图,在平面直角坐标系中,边长为2的正六边形ABCDEF的中心与原点O重合,AB∥x轴,交y轴于点P.将△OAP绕点O顺时针旋转,每次旋转90°,则第2022次旋转结束时,点A的坐标为(  )

    A.(,﹣1) B.(﹣1,﹣) C.(﹣,﹣1) D.(1,)
    【分析】由正六边形的性质可得A(1,),再根据由360°÷90°=4可知,每4次为一个循环,由2022÷4=505……2,可知点A2022与点A2重合,求出点A2的坐标可得答案.
    【解答】解:∵边长为2的正六边形ABCDEF的中心与原点O重合,
    ∴OA=AB=2,∠BAO=60°,
    ∵AB∥x轴,
    ∴∠APO=90°,
    ∴∠AOP=30°,
    ∴AP=1,OP=,
    ∴A(1,),
    ∵将△OAP绕点O顺时针旋转,每次旋转90°,可知点A2与D重合,

    由360°÷90°=4可知,每4次为一个循环,
    ∴2022÷4=505……2,
    ∴点A2022与点A2重合,
    ∵点A2与点A关于原点O对称,
    ∴A2(﹣1,﹣),
    ∴第2022次旋转结束时,点A的坐标为(﹣1,﹣),
    故选:B.
    【点评】本题主要考查了正六边形的性质,旋转的性质,含30°角的直角三角形的性质等知识,根据旋转的性质确定每4次为一个循环是解题的关键.
    10.(3分)呼气式酒精测试仪中装有酒精气体传感器,可用于检测驾驶员是否酒后驾车.酒精气体传感器是一种气敏电阻(图1中的R1),R1的阻值随呼气酒精浓度K的变化而变化(如图2),血液酒精浓度M与呼气酒精浓度K的关系见图3.下列说法不正确的是(  )

    A.呼气酒精浓度K越大,R1的阻值越小
    B.当K=0时,R1的阻值为100
    C.当K=10时,该驾驶员为非酒驾状态
    D.当R1=20时,该驾驶员为醉驾状态
    【分析】观察图2可直接判断A、B,由K=10可算出M的值,从而判断C,观察图2可得R1=20时K的值,从而算出M的值,即可判断D.
    【解答】解:由图2可知,呼气酒精浓度K越大,R1的阻值越小,故A正确,不符合题意;
    由图2知,K=0时,R1的阻值为100,故B正确,不符合题意;
    由图3知,当K=10时,M=2200×10×10﹣3=22(mg/100mL),
    ∴当K=10时,该驾驶员为酒驾状态,故C不正确,符合题意;
    由图2知,当R1=20时,K=40,
    ∴M=2200×40×10﹣3=88(mg/100mL),
    ∴该驾驶员为醉驾状态,故D正确,不符合题意;
    故选:C.
    【点评】本题考查反比例函数的应用,解题的关键是读懂题意,能正确识图.
    二、填空题(每小题3分,共15分)
    11.(3分)请写出一个y随x的增大而增大的一次函数的表达式: 答案不唯一,如y=x .
    【分析】根据一次函数的性质只要使一次项系数大于0即可.
    【解答】解:例如:y=x,或y=x+2等,答案不唯一.
    【点评】此题比较简单,考查的是一次函数y=kx+b(k≠0)的性质:
    当k>0时,y随x的增大而增大;
    当k<0时,y随x的增大而减小.
    12.(3分)不等式组的解集为  2<x≤3 .
    【分析】先解出每个不等式的解集,即可得到不等式组的解集.
    【解答】解:,
    解不等式①,得:x≤3,
    解不等式②,得:x>2,
    ∴该不等式组的解集是2<x≤3,
    故答案为:2<x≤3.
    【点评】本题考查解一元一次不等式组,解答本题的关键是明确解一元一次不等式的方法.
    13.(3分)为开展“喜迎二十大、永远跟党走、奋进新征程”主题教育宣讲活动,某单位从甲、乙、丙、丁四名宣讲员中随机选取两名进行宣讲,则恰好选中甲和丙的概率为   .
    【分析】画树状图,共有12种可能的结果,其中恰好选中甲和丙的结果有2种,再由概率公式求解即可.
    【解答】解:画树状图如下:

    共有12种可能的结果,其中恰好选中甲和丙的结果有2种,
    ∴恰好选中甲和丙的概率为=,
    故答案为:.
    【点评】本题考查的是用树状图法求概率.树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.
    14.(3分)如图,将扇形AOB沿OB方向平移,使点O移到OB的中点O′处,得到扇形A′O′B′.若∠O=90°,OA=2,则阴影部分的面积为  + .

    【分析】如图,设O′A′交于点T,连接OT.首先证明∠OTO′=30°,根据S阴=S扇形O′A′B′﹣(S扇形OTB﹣S△OTO′)求解即可.
    【解答】解:如图,设O′A′交于点T,连接OT.

    ∵OT=OB,OO′=O′B′,
    ∴OT=2OO′,
    ∵∠OO′T=90°,
    ∴∠O′TO=30°,∠TOO′=60°,
    ∴S阴=S扇形O′A′B′﹣(S扇形OTB﹣S△OTO′)
    =﹣(﹣×1×)
    =+.
    故答案为:+.
    【点评】本题考查扇形的面积,解直角三角形等知识,解题的关键是学会割补法求阴影部分的面积.
    15.(3分)如图,在Rt△ABC中,∠ACB=90°,AC=BC=2,点D为AB的中点,点P在AC上,且CP=1,将CP绕点C在平面内旋转,点P的对应点为点Q,连接AQ,DQ.当∠ADQ=90°时,AQ的长为  或 .

    【分析】分两种情况:当点Q在CD上,当点Q在DC的延长线上,利用勾股定理分别进行计算即可解答.
    【解答】解:如图:

    ∵∠ACB=90°,AC=BC=2,
    ∴AB=AC=4,
    ∵点D为AB的中点,
    ∴CD=AD=AB=2,∠ADC=90°,
    ∵∠ADQ=90°,
    ∴点C、D、Q在同一条直线上,
    由旋转得:
    CQ=CP=CQ′=1,
    分两种情况:
    当点Q在CD上,
    在Rt△ADQ中,DQ=CD﹣CQ=1,
    ∴AQ===,
    当点Q在DC的延长线上,
    在Rt△ADQ′中,DQ′=CD+CQ′=3,
    ∴AQ′===,
    综上所述:当∠ADQ=90°时,AQ的长为或,
    故答案为:或.

    【点评】本题考查了勾股定理,旋转的性质,等腰直角三角形,分两种情况进行讨论是解题的关键.
    三、解答题(本大题共8个小题,共75分)
    16.(10分)(1)计算:﹣()0+2﹣1;
    (2)化简:÷(1﹣).
    【分析】(1)先算立方根、零指数幂、负整数指数幂,再算加减;
    (2)先通分,把除化为乘,再分解因式约分.
    【解答】解:(1)原式=3﹣1+
    =;
    (2)原式=÷
    =•
    =x+1.
    【点评】本题考查实数运算和分式化简,解题的关键是掌握实数运算、分式运算的相关法则.
    17.(9分)2022年3月23日下午,“天宫课堂”第二课在中国空间站开讲,神舟十三号乘组航天员翟志刚、王亚平、叶光富相互配合进行授课,这是中国空间站的第二次太空授课,被许多中小学生称为“最牛网课”.某中学为了解学生对“航空航天知识”的掌握情况,随机抽取50名学生进行测试,并对成绩(百分制)进行整理,信息如下:
    a.成绩频数分布表:
    成绩x(分)
    50≤x<60
    60≤x<70
    70≤x<80
    80≤x<90
    90≤x≤100
    频数
    7
    9
    12
    16
    6
    b.成绩在70≤x<80这一组的是(单位:分):
    70 71 72 72 74 77 78 78 78 79 79 79
    根据以上信息,回答下列问题:
    (1)在这次测试中,成绩的中位数是  78.5 分,成绩不低于80分的人数占测试人数的百分比为  44% .
    (2)这次测试成绩的平均数是76.4分,甲的测试成绩是77分.乙说:“甲的成绩高于平均数,所以甲的成绩高于一半学生的成绩.”你认为乙的说法正确吗?请说明理由.
    (3)请对该校学生“航空航天知识”的掌握情况作出合理的评价.
    【分析】(1)根据中位数的定义求解即可,用不低于80分的人数除以被测试人数即可;
    (2)根据中位数的意义求解即可;
    (3)答案不唯一,合理均可.
    【解答】解:(1)这次测试成绩的中位数是第25、26个数据的平均数,而第25、26个数据分别为=78.5(分),
    所以这组数据的中位数是78.5分,
    成绩不低于80分的人数占测试人数的百分比为×100%=44%,
    故答案为:78.5,44%;
    (2)不正确,
    因为甲的成绩77分低于中位数78.5分,
    所以甲的成绩不可能高于一半学生的成绩;
    (3)测试成绩不低于80分的人数占测试人数的44%,说明该校学生对“航空航天知识”的掌握情况较好(答案不唯一,合理均可).
    【点评】本题考查了中位数,频数分布表等知识,掌握中位数的定义及其意义是解决问题的关键.
    18.(9分)如图,反比例函数y=(x>0)的图象经过点A(2,4)和点B,点B在点A的下方,AC平分∠OAB,交x轴于点C.
    (1)求反比例函数的表达式.
    (2)请用无刻度的直尺和圆规作出线段AC的垂直平分线.(要求:不写作法,保留作图痕迹)
    (3)线段OA与(2)中所作的垂直平分线相交于点D,连接CD.求证:CD∥AB.

    【分析】(1)直接把点A的坐标代入求出k即可;
    (2)利用尺规作出线段AC的垂直平分线m即可;
    (3)证明∠DCA=∠BAC,可得结论.
    【解答】(1)解:∵反比例函数y=(x>0)的图象经过点A(2,4),
    ∴k=2×4=8,
    ∴反比例函数的解析式为y=;

    (2)解:如图,直线m即为所求.


    (3)证明:∵AC平分∠OAB,
    ∴∠OAC=∠BAC,
    ∵直线m垂直平分线段AC,
    ∴DA=DC,
    ∴∠OAC=∠DCA,
    ∴∠DCA=∠BAC,
    ∴CD∥AB.
    【点评】本题考查作图﹣基本作图,反比例函数的性质,线段的垂直平分线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
    19.(9分)开封清明上河图是依照北宋著名画家张择端的《清明上河图》建造的,拂云阁是园内最高的建筑.某数学小组测量拂云阁DC的高度,如图,在A处用测角仪测得拂云阁顶端D的仰角为34°,沿AC方向前进15m到达B处,又测得拂云阁顶端D的仰角为45°.已知测角仪的高度为1.5m,测量点A,B与拂云阁DC的底部C在同一水平线上,求拂云阁DC的高度(结果精确到1m.参考数据:sin34°≈0.56,cos34°≈0.83,tan34°≈0.67).

    【分析】延长EF交DC于点H,根据题意可得:∠DHF=90°,EF=AB=15米,CH=BF=AE=1.5米,设FH=x米,在Rt△DFH中,利用锐角三角函数的定义求出FH的长,然后在Rt△DHE中,利用锐角三角函数的定义列出关于x的方程,进行计算即可解答.
    【解答】解:延长EF交DC于点H,

    由题意得:
    ∠DHF=90°,EF=AB=15米,CH=BF=AE=1.5米,
    设FH=x米,
    ∴EH=EF+FH=(15+x)米,
    在Rt△DFH中,∠DFH=45°,
    ∴DH=FH•tan45°=x(米),
    在Rt△DHE中,∠DEH=34°,
    ∴tan34°==≈0.67,
    ∴x≈30.1,
    经检验:x≈30.1是原方程的根,
    ∴DC=DH+CH=30.1+1.5≈32(米),
    ∴拂云阁DC的高度约为32米.

    【点评】本题考查了解直角三角形的应用﹣仰角俯角问题,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.
    20.(9分)近日,教育部印发《义务教育课程方案》和课程标准(2022年版),将劳动从原来的综合实践活动课程中独立出来.某中学为了让学生体验农耕劳动,开辟了一处耕种园,需要采购一批菜苗开展种植活动.据了解,市场上每捆A种菜苗的价格是菜苗基地的倍,用300元在市场上购买的A种菜苗比在菜苗基地购买的少3捆.
    (1)求菜苗基地每捆A种菜苗的价格.
    (2)菜苗基地每捆B种菜苗的价格是30元.学校决定在菜苗基地购买A,B两种菜苗共100捆,且A种菜苗的捆数不超过B种菜苗的捆数.菜苗基地为支持该校活动,对A,B两种菜苗均提供九折优惠.求本次购买最少花费多少钱.
    【分析】(1)设菜苗基地每捆A种菜苗的价格是x元,根据用300元在市场上购买的A种菜苗比在菜苗基地购买的少3捆,列方程可得菜苗基地每捆A种菜苗的价格是20元;
    (2)设购买A种菜苗m捆,则购买B种菜苗(100﹣m)捆,根据A种菜苗的捆数不超过B种菜苗的捆数,得m≤50,设本次购买花费w元,有w=20×0.9m+30×0.9(100﹣m)=﹣9m+2700,由一次函数性质可得本次购买最少花费2250元.
    【解答】解:(1)设菜苗基地每捆A种菜苗的价格是x元,
    根据题意得:=+3,
    解得x=20,
    经检验,x=20是原方程的解,
    答:菜苗基地每捆A种菜苗的价格是20元;
    (2)设购买A种菜苗m捆,则购买B种菜苗(100﹣m)捆,
    ∵A种菜苗的捆数不超过B种菜苗的捆数,
    ∴m≤100﹣m,
    解得m≤50,
    设本次购买花费w元,
    ∴w=20×0.9m+30×0.9(100﹣m)=﹣9m+2700,
    ∵﹣9<0,
    ∴w随m的增大而减小,
    ∴m=50时,w取最小值,最小值为﹣9×50+2700=2250(元),
    答:本次购买最少花费2250元.
    【点评】本题考查分式方程和一次函数的应用,解题的关键是读懂题意,列出方程及函数关系式.
    21.(9分)小红看到一处喷水景观,喷出的水柱呈抛物线形状,她对此展开研究:测得喷水头P距地面0.7m,水柱在距喷水头P水平距离5m处达到最高,最高点距地面3.2m;建立如图所示的平面直角坐标系,并设抛物线的表达式为y=a(x﹣h)2+k,其中x(m)是水柱距喷水头的水平距离,y(m)是水柱距地面的高度.
    (1)求抛物线的表达式.
    (2)爸爸站在水柱正下方,且距喷水头P水平距离3m.身高1.6m的小红在水柱下方走动,当她的头顶恰好接触到水柱时,求她与爸爸的水平距离.

    【分析】(1)由抛物线顶点(5,3.2),设抛物线的表达式为y=a(x﹣5)2+3.2,用待定系数法可得抛物线的表达式为y=﹣x2+x+;
    (2)当y=1.6时,﹣x2+x+=1.6,解得x=1或x=9,即得她与爸爸的水平距离为2m或6m.
    【解答】解:(1)由题意知,抛物线顶点为(5,3.2),
    设抛物线的表达式为y=a(x﹣5)2+3.2,将(0,0.7)代入得:
    0.7=25a+3.2,
    解得a=﹣,
    ∴y=﹣(x﹣5)2+3.2=﹣x2+x+,
    答:抛物线的表达式为y=﹣x2+x+;
    (2)当y=1.6时,﹣x2+x+=1.6,
    解得x=1或x=9,
    ∴她与爸爸的水平距离为3﹣1=2(m)或9﹣3=6(m),
    答:当她的头顶恰好接触到水柱时,与爸爸的水平距离是2m或6m.
    【点评】本题考查二次函数的应用,解题的关键是读懂题意,把实际问题转化为数学问题.
    22.(10分)为弘扬民族传统体育文化,某校将传统游戏“滚铁环”列入了校运动会的比赛项目.滚铁环器材由铁环和推杆组成.小明对滚铁环的启动阶段进行了研究,如图,滚铁环时,铁环⊙O与水平地面相切于点C,推杆AB与铅垂线AD的夹角为∠BAD,点O,A,B,C,D在同一平面内.当推杆AB与铁环⊙O相切于点B时,手上的力量通过切点B传递到铁环上,会有较好的启动效果.

    (1)求证:∠BOC+∠BAD=90°.
    (2)实践中发现,切点B只有在铁环上一定区域内时,才能保证铁环平稳启动.图中点B是该区域内最低位置,此时点A距地面的距离AD最小,测得cos∠BAD=.已知铁环⊙O的半径为25cm,推杆AB的长为75cm,求此时AD的长.
    【分析】(1)本小题难度不大,方法颇多,方法1:如图1,过点B作EF∥CD,分别交AD于点E,交OC于点F.首先证明∠BOC+∠OBF=90°,∠ABE+∠BAD=90°;再根据B是切点得出∠OBA=90°.后面就很简单的证明出结论;方法2:如图2,延长OB交CD于点M.因为AB为⊙O的切线,所以根据切线性质得到,∠OBA=90°,∠ABM=90°.再根据四边形、三角形的内角和即可证明;方法3:如图3,过点B作BN∥AD,根据两直线平行,内错角相等和切线性质,可以很简单的证明问题;
    (2)利用(1)中图1的辅助线即可解答.首先根据条件AB=75,cos∠BAD=,得到AE=45.再利用(1)证明出的,∠OBF=∠BAD,能得到四边形CDEF为矩形,所以DE=CF=5,从而得到AD=AE+ED=50cm.
    【解答】( 1)证明:方法1:如图1,过点B作EF∥CD,分别交AD于点E,交OC于点F.

    ∵CD与⊙O相切于点C,
    ∴∠OCD=90°.
    ∵AD⊥CD,
    ∴∠ADC=90°.
    ∵EF∥CD,
    ∴∠OFB=∠AEB=90°,
    ∴∠BOC+∠OBF=90°,∠ABE+∠BAD=90°,
    ∵AB为⊙O的切线,
    ∴∠OBA=90°.
    ∴∠OBF+∠ABE=90°,
    ∴∠OBF=90°.
    ∴∠OBF+∠ABE=90°,
    ∴∠OBF=∠BAD,
    ∴∠BOC+∠BAD=90°;
    方法2:如图2,延长OB交CD于点M.

    ∵CD与⊙O相切于点C,
    ∴∠OCM=90°,
    ∴∠BOC+∠BMC=90°,
    ∵AD⊥CD,
    ∴∠ADC=90°.
    ∵AB为⊙O的切线,
    ∴∠OBA=90°,
    ∴∠ABM=90°.
    ∴在四边形ABMD中,∠BAD+∠BMD=180°.
    ∵∠BMC+∠BMD=180°,
    ∴∠BMC=∠BAD.
    ∴∠BOC+∠BAD=90°;
    方法3:如图3,过点B作BN∥AD,

    ∴∠NBA=∠BAD.
    ∵CD与⊙O相切于点C,
    ∴∠OCD=90°,
    ∵AD⊥CD,
    ∴∠ADC=90°.
    ∴AD∥OC,
    ∴BN∥OC,
    ∴∠NBO=∠BOC.
    ∵AB为OO的切线,
    ∴∠OBA=90°,
    ∴∠NBO+∠NBA=90°,
    ∴∠BOC+∠BAD=90°.
    (2)解:如图1,在Rt△ABE中,

    ∵AB=75,cos∠BAD=,
    ∴AE=45.
    由(1)知,∠OBF=∠BAD,
    ∴cos∠OBF=,
    在Rt△OBF中,
    ∵OB=25,
    ∴BF=15,
    ∴OF=20.
    ∵OC=25,
    ∴CF=5.
    ∵∠OCD=∠ADC=∠CFE=90°,
    ∴四边形CDEF为矩形,
    ∴DE=CF=5,
    ∴AD=AE+ED=50cm.
    【点评】本题重点考查切线的判定和性质,三角函数,解题关键是根据已知和所求问题,合理作出辅助线.是很好的中考题.
    23.(10分)综合与实践
    综合与实践课上,老师让同学们以“矩形的折叠”为主题开展数学活动.
    (1)操作判断
    操作一:对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展平;
    操作二:在AD上选一点P,沿BP折叠,使点A落在矩形内部点M处,把纸片展平,连接PM,BM.
    根据以上操作,当点M在EF上时,写出图1中一个30°的角: ∠EMB或∠CBM或∠ABP或∠CBM(任写一个即可) .
    (2)迁移探究
    小华将矩形纸片换成正方形纸片,继续探究,过程如下:
    将正方形纸片ABCD按照(1)中的方式操作,并延长PM交CD于点Q,连接BQ.
    ①如图2,当点M在EF上时,∠MBQ= 15 °,∠CBQ= 15 °;
    ②改变点P在AD上的位置(点P不与点A,D重合),如图3,判断∠MBQ与∠CBQ的数量关系,并说明理由.
    (3)拓展应用
    在(2)的探究中,已知正方形纸片ABCD的边长为8cm,当FQ=1cm时,直接写出AP的长.

    【分析】(1)由折叠的性质可得AE=BE=AB,∠AEF=∠BEF=90°,AB=BM,∠ABP=∠PBM,由锐角三角函数可求∠EMB=30°,即可求解;
    (2)①由“HL”可证Rt△BCQ≌Rt△BMQ,可得∠CBQ=∠MBQ=15°;
    ②由“HL”可证Rt△BCQ≌Rt△BMQ,可得∠CBQ=∠MBQ;
    (3)分两种情况讨论,由折叠的性质和勾股定理可求解.
    【解答】解:(1)∵对折矩形纸片ABCD,
    ∴AE=BE=AB,∠AEF=∠BEF=90°,
    ∵沿BP折叠,使点A落在矩形内部点M处,
    ∴AB=BM,∠ABP=∠PBM,
    ∵sin∠BME==,
    ∴∠EMB=30°,
    ∴∠ABM=60°,
    ∴∠CBM=∠ABP=∠CBM=30°,
    故答案为:∠EMB或∠CBM或∠ABP或∠CBM(任写一个即可);
    (2)①由(1)可知∠CBM=30°,
    ∵四边形ABCD是正方形,
    ∴AB=BC,∠BAD=∠C=90°,
    由折叠可得:AB=BM,∠BAD=∠BMP=90°,
    ∴∠BM=BC,∠BMQ=∠C=90°,
    又∵BQ=BQ,
    ∴Rt△BCQ≌Rt△BMQ(HL),
    ∴∠CBQ=∠MBQ=15°,
    故答案为:15,15;
    ②∠MBQ=∠CBQ,理由如下:
    ∵四边形ABCD是正方形,
    ∴AB=BC,∠BAD=∠C=90°,
    由折叠可得:AB=BM,∠BAD=∠BMP=90°,
    ∴∠BM=BC,∠BMQ=∠C=90°,
    又∵BQ=BQ,
    ∴Rt△BCQ≌Rt△BMQ(HL),
    ∴∠CBQ=∠MBQ;
    (3)由折叠的性质可得DF=CF=4cm,AP=PQ,
    ∵Rt△BCQ≌Rt△BMQ,
    ∴CQ=MQ,
    当点Q在线段CF上时,∵FQ=1cm,
    ∴MQ=CQ=3cm,DQ=5cm,
    ∵PQ2=PD2+DQ2,
    ∴(AP+3)2=(8﹣AP)2+25,
    ∴AP=,
    当点Q在线段DF上时,∵FQ=1cm,
    ∴MQ=CQ=5cm,DQ=3cm,
    ∵PQ2=PD2+DQ2,
    ∴(AP+5)2=(8﹣AP)2+9,
    ∴AP=,
    综上所述:AP的长为cm或cm.
    【点评】本题是四边形综合题,考查了矩形的性质,正方形的性质,折叠的性质,全等三角形的判定和性质,灵活运用这些性质解决问题是解题的关键.
    声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布日期:2022/6/27 17:17:34;用户:严兰;邮箱:15527462825;学号:39033143
    相关试卷

    2023年河南省中考数学试卷(含解析): 这是一份2023年河南省中考数学试卷(含解析),共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    河南省中考数学试卷附解析: 这是一份河南省中考数学试卷附解析,共31页。试卷主要包含了填空题,解答题等内容,欢迎下载使用。

    2021年河南省中考数学试卷附解析: 这是一份2021年河南省中考数学试卷附解析,共26页。试卷主要包含了填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map