终身会员
搜索
    上传资料 赚现金

    2022年浙江省嘉兴市中考数学试卷(解析版)

    立即下载
    加入资料篮
    2022年浙江省嘉兴市中考数学试卷(解析版)第1页
    2022年浙江省嘉兴市中考数学试卷(解析版)第2页
    2022年浙江省嘉兴市中考数学试卷(解析版)第3页
    还剩23页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年浙江省嘉兴市中考数学试卷(解析版)

    展开

    这是一份2022年浙江省嘉兴市中考数学试卷(解析版),共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    2022年浙江省嘉兴市中考数学试卷
    一、选择题(本题有10小题,每题3分,共30分.)
    1.(3分)若收入3元记为+3,则支出2元记为(  )
    A.﹣2 B.﹣1 C.1 D.2
    2.(3分)如图是由四个相同的小立方体搭成的几何体,它的主视图是(  )

    A. B. C. D.
    3.(3分)计算a2•a(  )
    A.a B.3a C.2a2 D.a3
    4.(3分)如图,在⊙O中,∠BOC=130°,点A在上,则∠BAC的度数为(  )

    A.55° B.65° C.75° D.130°
    5.(3分)不等式3x+1<2x的解集在数轴上表示正确的是(  )
    A. B.
    C. D.
    6.(3分)“方胜”是中国古代妇女的一种发饰,其图案由两个全等正方形相叠组成,寓意是同心吉祥.如图,将边长为2cm的正方形ABCD沿对角线BD方向平移1cm得到正方形A′B′C′D′,形成一个“方胜”图案,则点D,B′之间的距离为(  )

    A.1cm B.2cm C.(﹣1)cm D.(2﹣1)cm
    7.(3分)A,B两名射击运动员进行了相同次数的射击,下列关于他们射击成绩的平均数和方差的描述中,能说明A成绩较好且更稳定的是(  )
    A.>且SA2>SB2 B.<且SA2>SB2
    C.>且SA2<SB2 D.<且SA2<SB2
    8.(3分)“市长杯”青少年校园足球联赛的比赛规则是:胜一场得3分,平一场得1分,负一场得0分.某校足球队在第一轮比赛中赛了9场,只负了2场,共得17分.那么该队胜了几场,平了几场?设该队胜了x场,平了y场,根据题意可列方程组为(  )
    A. B.
    C. D.
    9.(3分)如图,在△ABC中,AB=AC=8,点E,F,G分别在边AB,BC,AC上,EF∥AC,GF∥AB,则四边形AEFG的周长是(  )

    A.8 B.16 C.24 D.32
    10.(3分)已知点A(a,b),B(4,c)在直线y=kx+3(k为常数,k≠0)上,若ab的最大值为9,则c的值为(  )
    A.1 B. C.2 D.
    二、填空题(本题有6小题,每题4分,共24分)
    11.(4分)分解因式:m2﹣1=   .
    12.(4分)不透明的袋子中装有5个球,其中有3个红球和2个黑球,它们除颜色外都相同.从袋子中随机取出1个球,它是黑球的概率是    .
    13.(4分)小曹同学复习时将几种三角形的关系整理如图,请帮他在括号内填上一个适当的条件    .


    14.(4分)如图,在△ABC中,∠ABC=90°,∠A=60°,直尺的一边与BC重合,另一边分别交AB,AC于点D,E.点B,C,D,E处的读数分别为15,12,0,1,则直尺宽BD的长为    .

    15.(4分)某动物园利用杠杆原理称象:如图,在点P处挂一根质地均匀且足够长的钢梁(呈水平状态),将装有大象的铁笼和弹簧秤(秤的重力忽略不计)分别悬挂在钢梁的点A,B处,当钢梁保持水平时,弹簧秤读数为k(N).若铁笼固定不动,移动弹簧秤使BP扩大到原来的n(n>1)倍,且钢梁保持水平,则弹簧秤读数为    (N)(用含n,k的代数式表示).

    16.(4分)如图,在扇形AOB中,点C,D在上,将沿弦CD折叠后恰好与OA,OB相切于点E,F.已知∠AOB=120°,OA=6,则的度数为    ,折痕CD的长为    .

    三、解答题(本题有8小题,第17~19题每题6分,第20、21题每题8分,第22、23题每题10分,第24题12分,共66分)
    17.(6分)(1)计算:(1﹣)0﹣.
    (2)解方程:=1.
    18.(6分)小惠自编一题:“如图,在四边形ABCD中,对角线AC,BD交于点O,AC⊥BD,OB=OD.求证:四边形ABCD是菱形”,并将自己的证明过程与同学小洁交流.
    小惠:
    证明:∵AC⊥BD,OB=OD,
    ∴AC垂直平分BD.
    ∴AB=AD,CB=CD,
    ∴四边形ABCD是菱形.
    小洁:
    这个题目还缺少条件,需要补充一个条件才能证明.
    若赞同小惠的证法,请在第一个方框内打“√”;若赞成小洁的说法,请你补充一个条件,并证明.

    19.(6分)设是一个两位数,其中a是十位上的数字(1≤a≤9).例如,当a=4时,表示的两位数是45.
    (1)尝试:
    ①当a=1时,152=225=1×2×100+25;
    ②当a=2时,252=625=2×3×100+25;
    ③当a=3时,352=1225=   ;
    ……
    (2)归纳:与100a(a+1)+25有怎样的大小关系?试说明理由.
    (3)运用:若与100a的差为2525,求a的值.
    20.(8分)6月13日,某港口的潮水高度y(cm)和时间x(h)的部分数据及函数图象如下:
    x(h)

    11
    12
    13
    14
    15
    16
    17
    18

    y(cm)

    189
    137
    103
    80
    101
    133
    202
    260

    (数据来自某海洋研究所)
    (1)数学活动:
    ①根据表中数据,通过描点、连线(光滑曲线)的方式补全该函数的图象.
    ②观察函数图象,当x=4时,y的值为多少?当y的值最大时,x的值为多少?
    (2)数学思考:
    请结合函数图象,写出该函数的两条性质或结论.
    (3)数学应用:
    根据研究,当潮水高度超过260cm时,货轮能够安全进出该港口.请问当天什么时间段适合货轮进出此港口?

    21.(8分)小华将一张纸对折后做成的纸飞机如图1,纸飞机机尾的横截面是一个轴对称图形,其示意图如图2,已知AD=BE=10cm,CD=CE=5cm,AD⊥CD,BE⊥CE,∠DCE=40°.
    (1)连结DE,求线段DE的长.
    (2)求点A,B之间的距离.
    (结果精确到0.1cm.参考数据:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36,sin40°≈0.64,cos40°≈0.77,tan40°≈0.84)

    22.(10分)某教育部门为了解本地区中小学生参加家庭劳动时间的情况,随机抽取该地区1200名中小学生进行问卷调查,并将调查问卷(部分)和结果描述如下:
    调查问卷(部分)
    1.你每周参加家庭劳动时间大约是______h.
    如果你每周参加家庭劳动时间不足2h,请回答第2个问题:
    2.影响你每周参加家庭劳动的主要原因是______(单选).
    A.没时间
    B.家长不舍得
    C.不喜欢
    D.其它

    中小学生每周参加家庭劳动时间x(h) 分为5组:第一组(0≤x<0.5),第二组(0.5≤x<1),第三组(1≤x<1.5),第四组(1.5≤x<2),第五组(x≥2).
    根据以上信息,解答下列问题:
    (1)本次调查中,中小学生每周参加家庭劳动时间的中位数落在哪一组?
    (2)在本次被调查的中小学生中,选择“不喜欢”的人数为多少?
    (3)该教育部门倡议本地区中小学生每周参加家庭劳动时间不少于2h.请结合上述统计图,对该地区中小学生每周参加家庭劳动时间的情况作出评价,并提出两条合理化建议.
    23.(10分)已知抛物线L1:y=a(x+1)2﹣4(a≠0)经过点A(1,0).
    (1)求抛物线L1的函数表达式.
    (2)将抛物线L1向上平移m(m>0)个单位得到抛物线L2.若抛物线L2的顶点关于坐标原点O的对称点在抛物线L1上,求m的值.
    (3)把抛物线L1向右平移n(n>0)个单位得到抛物线L3,若点B(1,y1),C(3,y2)在抛物线L3上,且y1>y2,求n的取值范围.
    24.(12分)小东在做九上课本123页习题:“1:也是一个很有趣的比.已知线段AB(如图1),用直尺和圆规作AB上的一点P,使AP:AB=1:.”小东的作法是:如图2,以AB为斜边作等腰直角三角形ABC,再以点A为圆心,AC长为半径作弧,交线段AB于点P,点P即为所求作的点.小东称点P为线段AB的“趣点”.
    (1)你赞同他的作法吗?请说明理由.
    (2)小东在此基础上进行了如下操作和探究:连结CP,点D为线段AC上的动点,点E在AB的上方,构造△DPE,使得△DPE∽△CPB.
    ①如图3,当点D运动到点A时,求∠CPE的度数.
    ②如图4,DE分别交CP,CB于点M,N,当点D为线段AC的“趣点”时(CD<AD),猜想:点N是否为线段ME的“趣点”?并说明理由.



    2022年浙江省嘉兴市中考数学试卷
    参考答案与试题解析
    一、选择题(本题有10小题,每题3分,共30分.)
    1.(3分)若收入3元记为+3,则支出2元记为(  )
    A.﹣2 B.﹣1 C.1 D.2
    【分析】根据正负数的概念得出结论即可.
    【解答】解:由题意知,收入3元记为+3,则支出2元记为﹣2,
    故选:A.
    【点评】本题主要考查正负数的概念,熟练掌握正负数的概念是解题的关键.
    2.(3分)如图是由四个相同的小立方体搭成的几何体,它的主视图是(  )

    A. B. C. D.
    【分析】根据主视方向判断出主视图即可.
    【解答】解:由图可知主视图为:

    故选:C.
    【点评】本题主要考查视图的知识,熟练掌握三视图的知识是解题的关键.
    3.(3分)计算a2•a(  )
    A.a B.3a C.2a2 D.a3
    【分析】根据同底数幂相乘,底数不变,指数相加,即可解决问题.
    【解答】解:原式=a1+2=a3.
    故选:D.
    【点评】本题主要考查了同底数幂乘法,解决本题的关键是掌握同底数幂乘法法则.
    4.(3分)如图,在⊙O中,∠BOC=130°,点A在上,则∠BAC的度数为(  )

    A.55° B.65° C.75° D.130°
    【分析】根据同弧所对的圆周角等于圆心角的一半即可得出∠BAC的度数.
    【解答】解:∵∠BOC=130°,点A在上,
    ∴∠BAC=∠BOC==65°,
    故选:B.
    【点评】本题主要考查圆周角定理,熟练掌握圆周角定理是解题的关键.
    5.(3分)不等式3x+1<2x的解集在数轴上表示正确的是(  )
    A. B.
    C. D.
    【分析】根据解不等式的方法可以解答本题.
    【解答】解:3x+1<2x,
    移项,得:3x﹣2x<﹣1,
    合并同类项,得:x<﹣1,
    其解集在数轴上表示如下:

    故选:B.

    【点评】本题考查解一元一次不等式、在数轴上表示不等式的解集,解答本题的关键是明确解一元一次不等式的方法.
    6.(3分)“方胜”是中国古代妇女的一种发饰,其图案由两个全等正方形相叠组成,寓意是同心吉祥.如图,将边长为2cm的正方形ABCD沿对角线BD方向平移1cm得到正方形A′B′C′D′,形成一个“方胜”图案,则点D,B′之间的距离为(  )

    A.1cm B.2cm C.(﹣1)cm D.(2﹣1)cm
    【分析】根据正方形的性质、勾股定理求出BD,根据平移的概念求出BB′,计算即可.
    【解答】解:∵四边形ABCD为边长为2cm的正方形,
    ∴BD==2(cm),
    由平移的性质可知,BB′=1cm,
    ∴B′D=(2﹣1)cm,
    故选:D.
    【点评】本题考查的是平移的性质、正方形的性质,根据平移的概念求出BB′是解题的关键.
    7.(3分)A,B两名射击运动员进行了相同次数的射击,下列关于他们射击成绩的平均数和方差的描述中,能说明A成绩较好且更稳定的是(  )
    A.>且SA2>SB2 B.<且SA2>SB2
    C.>且SA2<SB2 D.<且SA2<SB2
    【分析】根据平均数及方差的意义直接求解即可.
    【解答】解:A,B两名射击运动员进行了相同次数的射击,当A的平均数大于B,且方差比B小时,能说明A成绩较好且更稳定.
    故选:C.
    【点评】本题主要考查平均数及方差的意义,熟练掌握平均数及方差的意义是解答此题的关键.
    8.(3分)“市长杯”青少年校园足球联赛的比赛规则是:胜一场得3分,平一场得1分,负一场得0分.某校足球队在第一轮比赛中赛了9场,只负了2场,共得17分.那么该队胜了几场,平了几场?设该队胜了x场,平了y场,根据题意可列方程组为(  )
    A. B.
    C. D.
    【分析】由题意:胜一场得3分,平一场得1分,负一场得0分.某校足球队在第一轮比赛中赛了9场,只负了2场,共得17分.列出二元一次方程组即可.
    【解答】解:根据题意得:,
    即,
    故选:A.
    【点评】此题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.
    9.(3分)如图,在△ABC中,AB=AC=8,点E,F,G分别在边AB,BC,AC上,EF∥AC,GF∥AB,则四边形AEFG的周长是(  )

    A.8 B.16 C.24 D.32
    【分析】由EF∥AC,GF∥AB,得四边形AEFG是平行四边形,∠B=∠GFC,∠C=∠EFB,再由AB=AC=8和等量代换,即可求得四边形AEFG的周长.
    【解答】解:∵EF∥AC,GF∥AB,
    ∴四边形AEFG是平行四边形,∠B=∠GFC,∠C=∠EFB,
    ∵AB=AC,
    ∴∠B=∠C,
    ∴∠B=∠EFB,∠GFC=∠C,
    ∴EB=EF,FG=GC,
    ∵四边形AEFG的周长=AE+EF+FG+AG,
    ∴四边形AEFG的周长=AE+EB+GC+AG=AB+AC,
    ∵AB=AC=8,
    ∴四边形AEFG的周长=AB+AC=8+8=16,
    故选:B.

    【点评】本题考查平行四边形的判定与性质、等腰三角形的性质、平行线的在等知识,熟练掌握平行四边形的判定与性质是解题的关键.
    10.(3分)已知点A(a,b),B(4,c)在直线y=kx+3(k为常数,k≠0)上,若ab的最大值为9,则c的值为(  )
    A.1 B. C.2 D.
    【分析】由点A(a,b),B(4,c)在直线y=kx+3上,可得,即得ab=a(ak+3)=ka2+3a=k(a+)2﹣,根据ab的最大值为9,得k=﹣,即可求出c=2.
    【解答】解:∵点A(a,b),B(4,c)在直线y=kx+3上,
    ∴,
    由①可得:ab=a(ak+3)=ka2+3a=k(a+)2﹣,
    ∵ab的最大值为9,
    ∴k<0,﹣=9,
    解得k=﹣,
    把k=﹣代入②得:4×(﹣)+3=c,
    ∴c=2,
    故选:C.
    【点评】本题考查一次函数图象上点坐标的特征及二次函数的最值,解题的关键是掌握配方法求函数的最值.
    二、填空题(本题有6小题,每题4分,共24分)
    11.(4分)分解因式:m2﹣1= (m+1)(m﹣1) .
    【分析】本题刚好是两个数的平方差,所以利用平方差公式分解则可.平方差公式:a2﹣b2=(a+b)(a﹣b).
    【解答】解:m2﹣1=(m+1)(m﹣1).
    【点评】本题考查了平方差公式因式分解.能用平方差公式进行因式分解的式子的特点是:两项平方项;符号相反.
    12.(4分)不透明的袋子中装有5个球,其中有3个红球和2个黑球,它们除颜色外都相同.从袋子中随机取出1个球,它是黑球的概率是   .
    【分析】直接根据概率公式可求解.
    【解答】解:∵盒子中装有3个红球,2个黑球,共有5个球,
    ∴从中随机摸出一个小球,恰好是黑球的概率是;
    故答案为:.
    【点评】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.
    13.(4分)小曹同学复习时将几种三角形的关系整理如图,请帮他在括号内填上一个适当的条件  ∠B=60°(答案不唯一) .


    【分析】根据等边三角形的判定定理填空即可.
    【解答】解:有一个角是60°的等腰三角形是等边三角形,
    故答案为:∠B=60°.(答案不唯一)
    【点评】本题考查等边三角形的判定,解题的关键是掌握等边三角形的定义及等边三角形与等腰三角形的关系.
    14.(4分)如图,在△ABC中,∠ABC=90°,∠A=60°,直尺的一边与BC重合,另一边分别交AB,AC于点D,E.点B,C,D,E处的读数分别为15,12,0,1,则直尺宽BD的长为   .

    【分析】根据正切的定义求出AB,证明△ADE∽△ABC,根据相似三角形的性质列出比例式,把已知数据代入计算即可.
    【解答】解:由题意得,DE=1,BC=3,
    在Rt△ABC中,∠A=60°,
    则AB===,
    ∵DE∥BC,
    ∴△ADE∽△ABC,
    ∴=,即=,
    解得:BD=,
    故答案为:.
    【点评】本题考查的是相似三角形的判定和性质、解直角三角形,掌握相似三角形的判定定理是解题的关键.
    15.(4分)某动物园利用杠杆原理称象:如图,在点P处挂一根质地均匀且足够长的钢梁(呈水平状态),将装有大象的铁笼和弹簧秤(秤的重力忽略不计)分别悬挂在钢梁的点A,B处,当钢梁保持水平时,弹簧秤读数为k(N).若铁笼固定不动,移动弹簧秤使BP扩大到原来的n(n>1)倍,且钢梁保持水平,则弹簧秤读数为   (N)(用含n,k的代数式表示).

    【分析】根据“动力×动力臂=阻力×阻力臂”分别列式,从而代入计算.
    【解答】解:如图,设装有大象的铁笼重力为aN,将弹簧秤移动到B′的位置时,弹簧秤的度数为k′,

    由题意可得BP•k=PA•a,B′P•k′=PA•a,
    ∴BP•k=B′P•k′,
    又∵B′P=nBP,
    ∴k′==,
    故答案为:.
    【点评】本题考查列代数式,属于跨学科综合题目,理解题意,掌握杠杆原理(动力×动力臂=阻力×阻力臂)是解题关键.
    16.(4分)如图,在扇形AOB中,点C,D在上,将沿弦CD折叠后恰好与OA,OB相切于点E,F.已知∠AOB=120°,OA=6,则的度数为  60° ,折痕CD的长为  4 .

    【分析】设翻折后的弧的圆心为O′,连接O′E,O′F,OO′,O′C,OO′交CD于点H,可得OO′⊥CD,CH=DH,O′C=OA=6,根据切线的性质可证明∠EOF=60°,则可得的度数;然后根据垂径定理和勾股定理即可解决问题.
    【解答】解:如图,设翻折后的弧的圆心为O′,连接O′E,O′F,OO′,O′C,OO′交CD于点H,
    ∴OO′⊥CD,CH=DH,O′C=OA=6,

    ∵将沿弦CD折叠后恰好与OA,OB相切于点E,F.
    ∴∠O′EO=∠O′FO=90°,
    ∵∠AOB=120°,
    ∴∠EO′F=60°,
    则的度数为60°;
    ∵∠AOB=120°,
    ∴∠O′OF=60°,
    ∵O′F⊥OB,O′E=O′F=O′C=6,
    ∴OO′===4,
    ∴O′H=2,
    ∴CH===2,
    ∴CD=2CH=4.
    故答案为:60°,4.
    【点评】本题考查了翻折变换,切线的性质,解决本题的关键是掌握翻折的性质.
    三、解答题(本题有8小题,第17~19题每题6分,第20、21题每题8分,第22、23题每题10分,第24题12分,共66分)
    17.(6分)(1)计算:(1﹣)0﹣.
    (2)解方程:=1.
    【分析】(1)分别利用0指数幂、算术平方根的定义化简,然后加减求解;
    (2)首先去分母化分式方程为整式方程,然后解整式方程,最后验根.
    【解答】解:(1)原式=1﹣2=﹣1;
    (2)去分母得x﹣3=2x﹣1,
    ∴﹣x=3﹣1,
    ∴x=﹣2,
    经检验x=﹣2是分式方程的解,
    ∴原方程的解为:x=﹣2.
    【点评】本题分别考查了实数的运算和解分式方程,实数的运算主要利用0指数幂及算术平方根的定义,解分式方程的基本方法时去分母.
    18.(6分)小惠自编一题:“如图,在四边形ABCD中,对角线AC,BD交于点O,AC⊥BD,OB=OD.求证:四边形ABCD是菱形”,并将自己的证明过程与同学小洁交流.
    小惠:
    证明:∵AC⊥BD,OB=OD,
    ∴AC垂直平分BD.
    ∴AB=AD,CB=CD,
    ∴四边形ABCD是菱形.
    小洁:
    这个题目还缺少条件,需要补充一个条件才能证明.
    若赞同小惠的证法,请在第一个方框内打“√”;若赞成小洁的说法,请你补充一个条件,并证明.

    【分析】根据“对角线互相垂直的平行四边形是菱形”进行分析推理.
    【解答】解:赞成小洁的说法,补充条件:OA=OC,证明如下:
    ∵OA=OC,OB=OD,
    ∴四边形ABCD是平行四边形,
    又∵AC⊥BD,
    ∴平行四边形ABCD是菱形.
    【点评】本题考查菱形的判定,掌握平行四边形的判定和菱形的判定方法(对角线互相垂直平分的四边形是菱形)是解题关键.
    19.(6分)设是一个两位数,其中a是十位上的数字(1≤a≤9).例如,当a=4时,表示的两位数是45.
    (1)尝试:
    ①当a=1时,152=225=1×2×100+25;
    ②当a=2时,252=625=2×3×100+25;
    ③当a=3时,352=1225= 3×4×100+25 ;
    ……
    (2)归纳:与100a(a+1)+25有怎样的大小关系?试说明理由.
    (3)运用:若与100a的差为2525,求a的值.
    【分析】(1)根据规律直接得出结论即可;
    (2)根据=(10a+5)(10a+5)=100a2+100a+25=100a(a+1)+25即可得出结论;
    (3)根据题意列出方程求解即可.
    【解答】解:(1)∵①当a=1时,152=225=1×2×100+25;②当a=2时,252=625=2×3×100+25;
    ∴③当a=3时,352=1225=3×4×100+25,
    故答案为:3×4×100+25;
    (2)=100a(a+1)+25,理由如下:
    =(10a+5)(10a+5)=100a2+100a+25=100a(a+1)+25;
    (3)由题知,﹣100a=2525,
    即100a2+100a+25﹣100a=2525,
    解得a=5或﹣5(舍去),
    ∴a的值为5.
    【点评】本题主要考查数字的变化规律,根据数字的变化规律得出=100a(a+1)+25的结论是解题的关键.
    20.(8分)6月13日,某港口的潮水高度y(cm)和时间x(h)的部分数据及函数图象如下:
    x(h)

    11
    12
    13
    14
    15
    16
    17
    18

    y(cm)

    189
    137
    103
    80
    101
    133
    202
    260

    (数据来自某海洋研究所)
    (1)数学活动:
    ①根据表中数据,通过描点、连线(光滑曲线)的方式补全该函数的图象.
    ②观察函数图象,当x=4时,y的值为多少?当y的值最大时,x的值为多少?
    (2)数学思考:
    请结合函数图象,写出该函数的两条性质或结论.
    (3)数学应用:
    根据研究,当潮水高度超过260cm时,货轮能够安全进出该港口.请问当天什么时间段适合货轮进出此港口?

    【分析】(1)①先描点,然后画出函数图象;
    ②利用数形结合思想分析求解;
    (2)结合函数图象增减性及最值进行分析说明;
    (3)结合函数图象确定关键点,从而求得取值范围.
    【解答】解:(1)①如图:

    ②通过观察函数图象,当x=4时,y=200,当y值最大时,x=21;
    (2)该函数的两条性质如下(答案不唯一):
    ①当2≤x≤7时,y随x的增大而增大;
    ②当x=14时,y有最小值为80;
    (3)由图象,当y=260时,x=5或x=10或x=18或x=23,
    ∴当5<x<10或18<x<23时,y>260,
    即当5<x<10或18<x<23时,货轮进出此港口.
    【点评】本题考查函数的图象,理解题意,准确识图,利用数形结合思想确定关键点是解题关键.
    21.(8分)小华将一张纸对折后做成的纸飞机如图1,纸飞机机尾的横截面是一个轴对称图形,其示意图如图2,已知AD=BE=10cm,CD=CE=5cm,AD⊥CD,BE⊥CE,∠DCE=40°.
    (1)连结DE,求线段DE的长.
    (2)求点A,B之间的距离.
    (结果精确到0.1cm.参考数据:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36,sin40°≈0.64,cos40°≈0.77,tan40°≈0.84)

    【分析】(1)过点C作CF⊥DE于点F,根据等腰三角形的性质可得∠DCF=20°,利用锐角三角函数即可解决问题;
    (2)根据横截面是一个轴对称图形,延长CF交AD、BE延长线于点G,连接AB,所以DE∥AB,根据直角三角形两个锐角互余可得∠A=∠GDE=20°,然后利用锐角三角函数即可解决问题.
    【解答】解:(1)如图,过点C作CF⊥DE于点F,

    ∵CD=CE=5cm,∠DCE=40°.
    ∴∠DCF=20°,
    ∴DF=CD•sin20°≈5×0.34≈1.7(cm),
    ∴DE=2DF≈3.4cm,
    ∴线段DE的长约为3.4cm;
    (2)∵横截面是一个轴对称图形,
    ∴延长CF交AD、BE延长线于点G,
    连接AB,
    ∴DE∥AB,
    ∴∠A=∠GDE,
    ∵AD⊥CD,BE⊥CE,
    ∴∠GDF+∠FDC=90°,
    ∵∠DCF+∠FDC=90°,
    ∴∠GDF=∠DCF=20°,
    ∴∠A=20°,
    ∴DG=≈≈1.8(cm),
    ∴AG=AD+DG=10+1.8=11.8(cm),
    ∴AB=2AG•cos20°≈2×11.8×0.94≈22.2(cm).
    ∴点A,B之间的距离22.2cm.
    【点评】本题考查了解直角三角形的应用,解决本题的关键是掌握锐角三角函数.
    22.(10分)某教育部门为了解本地区中小学生参加家庭劳动时间的情况,随机抽取该地区1200名中小学生进行问卷调查,并将调查问卷(部分)和结果描述如下:
    调查问卷(部分)
    1.你每周参加家庭劳动时间大约是______h.
    如果你每周参加家庭劳动时间不足2h,请回答第2个问题:
    2.影响你每周参加家庭劳动的主要原因是______(单选).
    A.没时间
    B.家长不舍得
    C.不喜欢
    D.其它

    中小学生每周参加家庭劳动时间x(h) 分为5组:第一组(0≤x<0.5),第二组(0.5≤x<1),第三组(1≤x<1.5),第四组(1.5≤x<2),第五组(x≥2).
    根据以上信息,解答下列问题:
    (1)本次调查中,中小学生每周参加家庭劳动时间的中位数落在哪一组?
    (2)在本次被调查的中小学生中,选择“不喜欢”的人数为多少?
    (3)该教育部门倡议本地区中小学生每周参加家庭劳动时间不少于2h.请结合上述统计图,对该地区中小学生每周参加家庭劳动时间的情况作出评价,并提出两条合理化建议.
    【分析】(1)由中位数的定义即可得出结论;
    (2)用1200乘“不喜欢”所占百分比即可;
    (3)根据中位数解答即可.
    【解答】解:(1)由统计图可知,抽取的这1200名学生每周参加家庭劳动时间的中位数为第600个和第601个数据的平均数,
    故中位数落在第二组;
    (2)(1200﹣200)×(1﹣8.7%﹣43.2%﹣30.6%)=175(人),
    答:在本次被调查的中小学生中,选择“不喜欢”的人数为175人;
    (3)由统计图可知,该地区中小学生每周参加家庭劳动时间大多数都小于2h,建议学校多开展劳动教育,养成劳动的好习惯.(答案不唯一).
    【点评】本题考查的是条形统计图和扇形统计图的知识,读懂频数分布直方图和利用统计图获取信息是解题的关键.
    23.(10分)已知抛物线L1:y=a(x+1)2﹣4(a≠0)经过点A(1,0).
    (1)求抛物线L1的函数表达式.
    (2)将抛物线L1向上平移m(m>0)个单位得到抛物线L2.若抛物线L2的顶点关于坐标原点O的对称点在抛物线L1上,求m的值.
    (3)把抛物线L1向右平移n(n>0)个单位得到抛物线L3,若点B(1,y1),C(3,y2)在抛物线L3上,且y1>y2,求n的取值范围.
    【分析】(1)把(1,0)代入抛物线的解析式求出a即可;
    (2)求出平移后抛物线的顶点关于原点对称点的坐标,利用待定系数法求解即可;
    (3)抛物线L1向右平移n(n>0)个单位得到抛物线L3,的解析式为y=(x﹣n+1)2﹣4,根据y1>y2,构建不等式求解即可.
    【解答】解:(1)∵y=a(x+1)2﹣4(a≠0)经过点A(1,0),
    ∴4a﹣4=0,
    ∴a=1,
    ∴抛物线L1的函数表达式为y=x2+2x﹣3;

    (2)∵y=(x+1)2﹣4,
    ∴抛物线的顶点(﹣1,﹣4),
    将抛物线L1向上平移m(m>0)个单位得到抛物线L2.若抛物线L2的顶点(﹣1,﹣4+m),
    而(﹣1,﹣4+m)关于原点的对称点为(1,4﹣m),
    把(1,4﹣m)代入y=x2+2x﹣3得到,1+2﹣3=4﹣m,
    ∴m=4;

    (3)抛物线L1向右平移n(n>0)个单位得到抛物线L3,的解析式为y=(x﹣n+1)2﹣4,
    ∵点B(1,y1),C(3,y2)在抛物线L3上,
    ∴y1=(2﹣n)2﹣4,y2=(4﹣n)2﹣4,
    ∵y1>y2,
    ∴(2﹣n)2﹣4>(4﹣n)2﹣4,
    解得n>3,
    ∴n的取值范围为n>3.
    【点评】本题属于二次函数综合题,考查了二次函数的性质,待定系数法,平移变换等知识,解题的关键是学会利用参数解决问题,属于中考常考题型.
    24.(12分)小东在做九上课本123页习题:“1:也是一个很有趣的比.已知线段AB(如图1),用直尺和圆规作AB上的一点P,使AP:AB=1:.”小东的作法是:如图2,以AB为斜边作等腰直角三角形ABC,再以点A为圆心,AC长为半径作弧,交线段AB于点P,点P即为所求作的点.小东称点P为线段AB的“趣点”.
    (1)你赞同他的作法吗?请说明理由.
    (2)小东在此基础上进行了如下操作和探究:连结CP,点D为线段AC上的动点,点E在AB的上方,构造△DPE,使得△DPE∽△CPB.
    ①如图3,当点D运动到点A时,求∠CPE的度数.
    ②如图4,DE分别交CP,CB于点M,N,当点D为线段AC的“趣点”时(CD<AD),猜想:点N是否为线段ME的“趣点”?并说明理由.


    【分析】(1)利用等腰三角形的性质证明,再利用AC=AP,即可得出结论;
    (2)①由题意可得:∠CAB=∠B=45°,∠ACB=90°,AC=AP=BC,再求解∠ACP=∠APC=67.5°,∠CPB=112.5°,证明∠DPE=∠CPB=112.5°,从而可得答案;
    ②先证明△ADP∽△ACB,可得∠APD=45°,DP∥CB,再证明MP=MD=MC=MN,∠EMP=45°,∠MPE=90°,从而可得出结论.
    【解答】解:(1)赞同,理由如下:
    ∵△ABC是等腰直角三角形,
    ∴AC=BC,∠A=∠B=45°,
    ∴cos45°=,
    ∵AC=AP,
    ∴,
    ∴点P为线段AB的“趣点”.
    (2)①由题意得:∠CAB=∠B=45°,
    ∠ACB=90°,AC=AP=BC,
    ∴=67.5°,
    ∴∠BCP=90°﹣67.5°=22.5°,
    ∴∠CPB=180°﹣45°﹣22.5°=112.5°,
    ∵△DPE∽△CPB,D,A重合,
    ∴∠DPE=∠CPB=112.5°,
    ∴∠CPE=∠DPE+∠CPB﹣180°=45°;
    ②点N是线段ME的趣点,理由如下:
    当点D为线段AC的趣点时(CD<AD),
    ∴,
    ∵AC=AP,
    ∴,
    ∵,∠A=∠A,
    ∴△ADP∽△ACB,
    ∴∠ADP=∠ACB=90°,
    ∴∠APD=45°,DP∥CB,
    ∴∠DPC=∠PCB=22.5°=∠PDE,
    ∴DM=PM,
    ∴∠MDC=∠MCD=90°﹣22.5°=67.5°,
    ∴MD=MC,
    同理可得MC=MN,
    ∴MP=MD=MC=MN,
    ∵∠MDP=∠MPD=22.5°,∠E=∠B=45°,
    ∴∠EMP=45°,∠MPE=90°,
    ∴=,
    ∴点N是线段ME的“趣点”.
    【点评】本题考查了等腰直角三角形的性质,锐角三角形函数的应用,相似三角形的判定与性质,三角形的外角的性质,等腰三角形的判定与性质,理解新定义的含义,掌握特殊几何图形的性质是解题的关键.
    声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布日期:2022/7/22 11:02:56;用户:严兰;邮箱:15527462825;学号:39033143

    相关试卷

    2019年浙江省嘉兴市中考数学试卷(含解析):

    这是一份2019年浙江省嘉兴市中考数学试卷(含解析),共21页。试卷主要包含了选择题,填空题等内容,欢迎下载使用。

    浙江省嘉兴市2022年中考数学试卷解析版:

    这是一份浙江省嘉兴市2022年中考数学试卷解析版,共17页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2022年浙江省嘉兴市中考数学试卷(含答案解析):

    这是一份2022年浙江省嘉兴市中考数学试卷(含答案解析),共17页。试卷主要包含了1cm,【答案】D,【答案】B,【答案】C,【答案】A等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map