终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    专题6.7 排列、组合的综合应用大题专项训练(30道)-高二数学举一反三系列(人教A版选择性必修第三册)

    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      专题6.7 排列、组合的综合应用大题专项训练(30道)(举一反三)(人教A版选择性必修第三册)(原卷版).docx
    • 解析
      专题6.7 排列、组合的综合应用大题专项训练(30道)(举一反三)(人教A版选择性必修第三册)(解析版).docx
    专题6.7 排列、组合的综合应用大题专项训练(30道)(举一反三)(人教A版选择性必修第三册)(原卷版)第1页
    专题6.7 排列、组合的综合应用大题专项训练(30道)(举一反三)(人教A版选择性必修第三册)(原卷版)第2页
    专题6.7 排列、组合的综合应用大题专项训练(30道)(举一反三)(人教A版选择性必修第三册)(原卷版)第3页
    专题6.7 排列、组合的综合应用大题专项训练(30道)(举一反三)(人教A版选择性必修第三册)(解析版)第1页
    专题6.7 排列、组合的综合应用大题专项训练(30道)(举一反三)(人教A版选择性必修第三册)(解析版)第2页
    专题6.7 排列、组合的综合应用大题专项训练(30道)(举一反三)(人教A版选择性必修第三册)(解析版)第3页
    还剩8页未读, 继续阅读
    下载需要15学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    人教A版 (2019)选择性必修 第三册第六章 计数原理6.2 排列与组合综合训练题

    展开

    这是一份人教A版 (2019)选择性必修 第三册第六章 计数原理6.2 排列与组合综合训练题,文件包含专题67排列组合的综合应用大题专项训练30道举一反三人教A版选择性必修第三册解析版docx、专题67排列组合的综合应用大题专项训练30道举一反三人教A版选择性必修第三册原卷版docx等2份试卷配套教学资源,其中试卷共32页, 欢迎下载使用。
    专题6.7 排列、组合的综合应用大题专项训练(30道)人教A版选择性必修第三册姓名:___________班级:___________考号:___________1.(2022·河南南阳·高二阶段练习)用0123四个数字组成没有重复数字的自然数.(1)把这些自然数从小到大排成一个数列,1230是这个数列的第几项?(2)其中的四位数中偶数有多少个?所有这些偶数它们各个数位上的数字之和是多少?    2.(2022·全国·高三专题练习)已知有6本不同的书.分成三堆,每堆2本,有多少种不同的分堆方法?    3.(2022·高二课时练习)从5名教师中挑选2人,分别担任两个班的班主任,有多少种不同的安排方案?    4.(2022·上海嘉定·高二期末)(1)用12345可以组成多少个四位数?2)用012345可以组成多少个没有重复数字的四位偶数?    5.(2022·全国·高三专题练习)现有7位同学(分别编号为)排成一排拍照,若其中三人互不相邻,两人也不相邻,而两人必须相邻,求不同的排法总数.    6.(2022·高二课时练习)从177个数字中取两个偶数和三个奇数组成没有重复数字的五位数.试问:1)五位数中,两个偶数排在一起的有几个?2)两个偶数不相邻且三个奇数也不相邻的五位数有几个?(所有结果均用数值表示)    7.(2022·高二单元测试)4个不同的球,4个不同的盒子,把球全部放入盒内.1)恰有1个盒不放球,共有几种放法?2)恰有1个盒内有2个球,共有几种放法?    8.(2022·江苏宿迁·高二阶段练习)某人设计了一项单人游戏,规则如下:先将一棋子放在如图所示的正方形(边长为3个单位)的顶点A处,然后通过掷骰子来确定棋子沿正方形的边按逆时针方向行走的单位,如果掷出的点数为,则棋子就按逆时针方向行走i个单位,一直循环下去,则某人抛掷三次骰子后棋子恰好又回到点A处的所有不同走法有多少种?    9.(2022·天津河西·高二期中)从13579这五个数字中任取两个数字,从0246这四个数字中任取两个数字.(1)共可组成多少个没有重复数字的四位数?(2)共可组成多少个没有重复数字的四位偶数?    10.(2022·全国·高三专题练习)现有编号分别为7个不同的小球,将这些小球排成一排1)若要求相邻,则有多少种不同的排法?2)若要求排在正中间,且各不相邻,则有多少种不同的排法?    11.(2023·全国·高二专题练习)设有编号为123455个球和编号为123455个盒子,现将这5个球放入5个盒子内.(1)只有1个盒子空着,共有多少种投放方法?(2)没有1个盒子空着,但球的编号与盒子编号不全相同,有多少种投放方法?(3)每个盒子内投放1球,并且至少有2个球的编号与盒子编号相同,有多少种投放方法?    12.(2022·全国·高三专题练习)用012345个数字,可以组成多少个满足下列条件的没有重复数字五位数?(1)偶数:(2)左起第二四位是奇数的偶数;(3)21034大的偶数.    13.(2022·浙江金华·高二阶段练习)从1357中任取两个数,从0246中任取两个数,组成没有重复数字的四位数.(1)可以组成多少个四位偶数?(2)可以组成多少个两个奇数数字相邻的四位数?(所有结果均用数值表示)    14.(2022·全国·高三专题练习)某种产品的加工需要经过道工序.(1)如果工序不能放在最后,那么有多少种加工顺序?(数字作答)(2)如果工序必须相邻,那么有多少种加工顺序?(数字作答)(3)如果工序CD必须不能相邻,那么有多少种加工顺序?(数字作答)    15.(2022·全国·高三专题练习)杭州亚运会将于2022910日至25日举行,相关部门计划将6名志愿者分配到亚运会三个不同的运动场馆做服务工作,每个岗位至少1.(1)一共有多少种不同的分配方案?(2)6名志愿者中的甲和乙必须分配在同一个场馆工作,则共有多少种不同的分配方案?    16.(2022·福建三明·高二期中)在班级主题班会活动中,4名男生和3名女生站成一排表演节目:(1)4名男生相邻有多少种不同的站法?(2)从中选出2名男生和2名女生表演分四个不同角色的朗诵,有多少种选派方法?(写出必要的数学式和过程,结果用数字作答)    17.(2023·全国·高三专题练习)用01234五个数字.(1)可以排成多少个不重复的能被2整除的五位数?(2)可以排成多少个四位数?(3)可以排成多少个四位数字的电话号码?    18.(2022·河北衡水·高二阶段练习)为弘扬我国古代的六艺文化,某夏令营主办单位计划利用暑期开设礼乐射御书数六门体验课程.(1)若体验课连续开设六周,每周一门,求其中射不排在第一周,数不排在最后一周的所有可能排法种数;(2)戊五名教师在教这六门课程,每名教师至少任教一门课程,求其中甲不任教数的课程安排方案种数.    19.(2022·吉林长春·高二考阶段练习)从5名男生和4名女生中选出4人去参加数学竞赛.(1)如果选出的4人中男生、女生各2人,那么有多少种选法?(2)如果男生中的小王和女生中的小红至少有1人入选,那么有多少种选法?(3)如果被选出的4人是甲、乙、丙、丁,将这4人派往2个考点,每个考点至少1人,那么有多少种派送方式?    20.(2022·浙江湖州·高二期中)从中任取个数字,从中任取个数字.(1)组成无重复数字的五位数,其中能被整除的有多少个?(2)一共可组成多少个无重复数字的五位数?(3)组成无重复数字的五位数,其中奇数排在奇数位上的共有多少个?    21.(2022·高二单元测试)班上每个小组有12名同学,现要从每个小组选4名同学代表本组与其他小组进行辩论赛.(1)每个小组有多少种选法?(2)如果还要从选出的同学中指定1名作替补,那么每个小组有多少种选法?(3)如果还要将选出的同学分别指定为第一、二、三、四辩手,那么每个小组有多少种选法?    22.(2023·全国·高三专题练习)用01234五个数字:(1)可组成多少个五位数;(2)可组成多少个无重复数字的五位数;(3)可组成多少个无重复数字的且是3的倍数的三位数;(4)可组成多少个无重复数字的五位奇数.    23.(2022·北京昌平·高二期末)有7个人分成两排就座,第一排3人,第二排4人.(1)共有多少种不同的坐法?(2)如果甲和乙都在第二排,共有多少种不同的坐法?(3)如果甲和乙不能坐在每排的两端,共有多少种不同的坐法?    24.(2022·河北唐山·高二阶段练习)有4个编号为1234的小球,4个编号为1234的盒子,现需把球全部放进盒子里,(最后结果用数字作答)(1)没有空盒子的方法共有多少种?(2)可以有空盒子的方法共有多少种?(3)恰有1个盒子不放球,共有多少种方法?(4)恰有一个小球放入自己编号的盒中,有多少种不同的放法?    25.(2022·全国·高三专题练习)3名男生与4名女生,按照下列不同的要求,求不同的方案的方法总数.按要求列出式子,再计算结果,用数字作答.(1)从中选出2名男生和2名女生排成一列;(2)全体站成一排,男生不能站一起;(3)全体站成一排,甲不站排头,也不站排尾.(4)全体站成一排,甲、乙必须站在一起,而丙、丁不能站在一起;    26.(2022·吉林长春·高二阶段练习)一个正方形花圃被分成5份.1)若给这5个部分种植花,要求相邻两部分种植不同颜色的花,已知现有红、黄、蓝、绿4种颜色不同的花,求有多少种不同的种植方法?2)若将6个不同的盆栽都摆放入这5个部分,且要求每个部分至少有一个盆栽,问有多少种不同的放法?    27.(2022·江苏无锡·高二期中)如图,四边形的两条对角线相交于,现用五种颜色(其中一种为红色)对图中四个三角形进行染色,且每个三角形用一种颜色染.(1)若必须使用红色,求四个三角形中有且只有一组相邻三角形同色的染色方法的种数;(2)若不使用红色,求四个三角形中所有相邻三角形都不同色的染色方法的种数.    28.(2022·吉林长春·高二阶段练习)某学习小组有3个男生和4个女生共7人:(1)将此7人排成一排,男女彼此相间的排法有多少种?(2)将此7人排成一排,男生甲不站最左边,男生乙不站最右边的排法有多少种?(3)从中选出2名男生和2名女生分别承担4种不同的任务,有多少种选派方法?(4)现有7个座位连成一排,仅安排4个女生就座,恰有两个空位相邻的不同坐法共有多少种?    29.(2022·广东广州·高二期中)按下列要求分配6本不同的书,各有多少种不同的分配方式?(1)分成三份,11本,12本,13本;(2)甲、乙、丙三人中,一人得1本,一人得2本,一人得3本;(3)平均分成三份,每份2本;(4)平均分配给甲、乙、丙三人,每人2本;(5)分成三份,14本,另外两份每份1.    30.(2022·河北石家庄·高二阶段练习)(1)如图,从左到右有5个空格.i)若向这5个格子填入01234五个数,要求每个数都要用到,且第三个格子不能填0,则一共有多少不同的填法?ii)若给这5个空格涂上颜色,要求相邻格子不同色,现有红黄蓝3颜色可供使用,问一共有多少不同的涂法?iii)若向这5个格子放入7个不同的小球,要求每个格子里都有球,问有多少种不同的放法?2)如图,用四种不同的颜色给三棱柱的六个顶点涂色,要求每个点涂一种颜色.i)若每个底面的顶点涂色所使用的颜色不相同,则不同的涂色方法共有多少种?ii)若每条棱的两个端点涂不同的颜色,则不同的涂色方法共有多少种?(注:最终结果均用数字作答)
     

    相关试卷

    专题6.4 排列、组合的综合应用大题专项训练-2023-2024学年高二数学讲练测(人教A版选择性必修第三册):

    这是一份专题6.4 排列、组合的综合应用大题专项训练-2023-2024学年高二数学讲练测(人教A版选择性必修第三册),文件包含专题64排列组合的综合应用大题专项训练举一反三人教A版选择性必修第三册原卷版docx、专题64排列组合的综合应用大题专项训练举一反三人教A版选择性必修第三册解析版docx等2份试卷配套教学资源,其中试卷共29页, 欢迎下载使用。

    专题6.2 排列与组合-2023-2024学年高二数学讲练测(人教A版选择性必修第三册):

    这是一份专题6.2 排列与组合-2023-2024学年高二数学讲练测(人教A版选择性必修第三册),文件包含专题62排列与组合举一反三人教A版选择性必修第三册原卷版docx、专题62排列与组合举一反三人教A版选择性必修第三册解析版docx等2份试卷配套教学资源,其中试卷共30页, 欢迎下载使用。

    人教A版 (2019)选择性必修 第一册2.4 圆的方程测试题:

    这是一份人教A版 (2019)选择性必修 第一册2.4 圆的方程测试题,共40页。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map