2022-2023学年北师大版七年级下学期期末数学复习题1(含答案)
展开
这是一份2022-2023学年北师大版七年级下学期期末数学复习题1(含答案),共15页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2022-2023学年北师大版七年级下学期期末数学复习题1一、选择题(本大题共10小题,每小题3分,共30分.每小题给出四个选项中只有一个是正确的,请把答题卡上对应题目所选的选项涂黑)1.(3分)计算a6•a2的结果是( )A.a3 B.a4 C.a8 D.a122.(3分)人体中红细胞的直径约为0.0000077米,将0.0000077用科学记数法表示为( )A.7.7×10﹣6 B.7.7×10﹣5 C.0.77×10﹣6 D.0.77×10﹣53.(3分)下列几何图形不一定是轴对称图形的是( )A.等边三角形 B.平行四边形 C.角 D.圆4.(3分)王老师的讲义夹里放了大小相同的试卷12张,其中语文5张,数学4张,外语3张,他随机从讲义夹中抽出1张,抽出的试卷恰好是数学试卷的概率是( )A. B. C. D.5.(3分)下列事件中,是不确定事件的是( )A.三条线段可以组成一个三角形 B.内错角相等,两条直线平行 C.对顶角相等 D.平行于同一条直线的两条直线平行6.(3分)如图,要把河中的水引到水池A中,应在河岸B处(AB⊥CD)开始挖渠才能使水渠的长度最短,这样做依据的几何学原理是( )A.两点之间线段最短 B.点到直线的距离 C.两点确定一条直线 D.垂线段最短7.(3分)如图所示,AB∥CD,EF⊥BD,垂足为E,∠1=50°,则∠2的度数为( )A.50° B.40° C.45° D.25°8.(3分)如图,AC和BD相交于O点,若OA=OD,用“SAS”证明△AOB≌△DOC还需( )A.AB=DC B.OB=OC C.∠C=∠D D.∠AOB=∠DOC9.(3分)下列各式不能用平方差公式计算的是( )A.(a﹣1)(a+1) B.(3+a)(a﹣3) C.(﹣2a+b)(2a﹣b) D.(﹣2a+b)(﹣2a﹣b)10.(3分)如图所示的正方形网格中,网格线的交点称为格点.已知A、B是两格点,如果P也是图中的格点,且使得△ABP为等腰三角形,则点P的个数是( )A.5 B.6 C.7 D.8二、填空题(本大题共7小题,每小题4分,共28分.请把答案填写在答题卡的横线上)11.(4分)计算:3a•(2a﹣5)= .12.(4分)若∠A=67°,则∠A的余角= .13.(4分)在一个不透明的盒子中装有a个除颜色外完全相同的球,其中只有6个白球.若每次将球充分搅匀后,任意摸出1个球记下颜色后再放回盒子,通过大量重复试验后,发现摸到白球的频率稳定在20%左右,则a的值约为 .14.(4分)如图,A、B两点分别位于一个池塘的两端,点C是AD的中点,也是BE的中点,若DE=15米,则AB= 米.15.(4分)图书馆现有4000本图书供学生借阅,如果每个学生一次借5本,则剩下的书y(本)和借书学生人数x(人)之间的函数关系式是 .16.(4分)如图在△ABC中,BC=8,AB、AC的垂直平分线与BC分别交于E、F两点,则△AEF的周长为 .17.(4分)如果定义一种新运算,规定ad﹣bc,请化简: .三、解答题(一)(本大题3小题,每小题6分,共18分)18.(6分)计算:(1)()﹣1+(π﹣2020)0﹣(﹣1)2020;(2)(3xy3)2•(﹣xy).19.(6分)如图,如果AD∥BC,∠B=∠C,那么AD是∠EAC的平分线吗?请说明你判别的理由.20.(6分)如图,转盘被等分成六个扇形,并在上面依次写上数字1、2、3、4、5、6.(1)若自由转动转盘,当它停止转动时,指针指向偶数区域的概率是多少?(2)请你用这个转盘设计一个游戏,当自由转动的转盘停止时,指针指向区域的概率为.四.解答题(本大题3小题,每小题8分,满分24分)21.(8分)先化简,再求值:[(x+2y)2﹣(x+y)(x﹣y)]÷2y,其中x,y=﹣2.22.(8分)如图,在正方形网格上的一个△ABC,且每个小正方形的边长为1(其中点A,B,C均在网格上).(1)作△ABC关于直线MN的轴对称图形△A′B′C′;(2)在MN上画出点P,使得PA+PC最小;(3)求出△ABC的面积.23.(8分)如图,△ABC与△DCB中,AC与BD交于点E,且∠A=∠D,AB=DC.(1)求证:△ABE≌△DCE;(2)当∠AEB=60°,求∠EBC的度数.五.解答题(本大题2小题,每小题10分,满分20分)24.(10分)小王周末骑电动车从家里出发去商场买东西,当他骑了一段路时,想起要买一本书,于是原路返回到刚经过的新华书店,买到书后继续前往商场,如图是他离家的距离(米)与时间(分钟)之间的关系示意图,请根据图中提供的信息回答下列问题:(1)在此变化过程中,自变量是 ,因变量是 .(2)小王在新华书店停留了多长时间?(3)买到书后,小王从新华书店到商场的骑车速度是多少?25.(10分)如图,在等边三角形ABC的顶点A、C处各有一只蜗牛,它们同时出发,分别以相同的速度由A向B和由C向A爬行,经过t分钟后,它们分别爬行到了D、E处,设DC与BE的交点为F.(1)BE与CD有何数量关系?为什么?(2)问蜗牛在爬行过程中,DC与BE所成的∠BFC的大小有无变化?若有变化,请说明理由;若没有变化,求出∠BFC的大小.
2019-2020学年广东省清远市阳山县七年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.每小题给出四个选项中只有一个是正确的,请把答题卡上对应题目所选的选项涂黑)1.(3分)计算a6•a2的结果是( )A.a3 B.a4 C.a8 D.a12【解答】解:a6•a2=a8,故选:C.2.(3分)人体中红细胞的直径约为0.0000077米,将0.0000077用科学记数法表示为( )A.7.7×10﹣6 B.7.7×10﹣5 C.0.77×10﹣6 D.0.77×10﹣5【解答】解:0.0000077=7.7×10﹣6.故选:A.3.(3分)下列几何图形不一定是轴对称图形的是( )A.等边三角形 B.平行四边形 C.角 D.圆【解答】解:A、是轴对称图形,故本选项不符合题意;B、不是轴对称图形,故本选项符合题意;C、是轴对称图形,故本选项不符合题意;D、是轴对称图形,故本选项不符合题意.故选:B.4.(3分)王老师的讲义夹里放了大小相同的试卷12张,其中语文5张,数学4张,外语3张,他随机从讲义夹中抽出1张,抽出的试卷恰好是数学试卷的概率是( )A. B. C. D.【解答】解:∵王老师的讲义夹里放了大小相同的试卷共12页,数学4页,∴他随机地从讲义夹中抽出1页,抽出的试卷恰好是数学试卷的概率为.故选:B.5.(3分)下列事件中,是不确定事件的是( )A.三条线段可以组成一个三角形 B.内错角相等,两条直线平行 C.对顶角相等 D.平行于同一条直线的两条直线平行【解答】解:A、三条线段可以组成一个三角形,属于随机事件,符合题意;B、内错角相等,两条直线平行,是一定发生的事件,属于必然事件,不符合题意;C、对顶角相等,属于必然事件,不符合题意;D、在平面内,平行于同一条直线的两条直线平行,属于必然事件,不符合题意;故选:A.6.(3分)如图,要把河中的水引到水池A中,应在河岸B处(AB⊥CD)开始挖渠才能使水渠的长度最短,这样做依据的几何学原理是( )A.两点之间线段最短 B.点到直线的距离 C.两点确定一条直线 D.垂线段最短【解答】解:要把河中的水引到水池A中,应在河岸B处(AB⊥CD)开始挖渠才能使水渠的长度最短,这样做依据的几何学原理是:垂线段最短,故选:D.7.(3分)如图所示,AB∥CD,EF⊥BD,垂足为E,∠1=50°,则∠2的度数为( )A.50° B.40° C.45° D.25°【解答】解:在△DEF中,∠1=50°,∠DEF=90°,∴∠D=180°﹣∠DEF﹣∠1=40°.∵AB∥CD,∴∠2=∠D=40°.故选:B.8.(3分)如图,AC和BD相交于O点,若OA=OD,用“SAS”证明△AOB≌△DOC还需( )A.AB=DC B.OB=OC C.∠C=∠D D.∠AOB=∠DOC【解答】解:A、AB=DC,不能根据SAS证两三角形全等,故本选项错误;B、∵在△AOB和△DOC中,∴△AOB≌△DOC(SAS),故本选项正确;C、两三角形相等的条件只有OA=OD和∠AOB=∠DOC,不能证两三角形全等,故本选项错误;D、根据∠AOB=∠DOC和OA=OD,不能证两三角形全等,故本选项错误;故选:B.9.(3分)下列各式不能用平方差公式计算的是( )A.(a﹣1)(a+1) B.(3+a)(a﹣3) C.(﹣2a+b)(2a﹣b) D.(﹣2a+b)(﹣2a﹣b)【解答】解:A、原式能用平方差公式计算,不合题意;B、原式能用平方差公式计算,不合题意;C、原式可化为﹣(2a﹣b)(2a﹣b),不能用平方差公式计算,符合题意;D、原式能用平方差公式计算,不合题意;故选:C.10.(3分)如图所示的正方形网格中,网格线的交点称为格点.已知A、B是两格点,如果P也是图中的格点,且使得△ABP为等腰三角形,则点P的个数是( )A.5 B.6 C.7 D.8【解答】解:如图,分情况讨论:①AB为等腰△ABP的底边时,符合条件的P点有4个;②AB为等腰△ABP其中的一条腰时,符合条件的P点有4个.故选:D.二、填空题(本大题共7小题,每小题4分,共28分.请把答案填写在答题卡的横线上)11.(4分)计算:3a•(2a﹣5)= 6a2﹣15a .【解答】解:3a•(2a﹣5)=6a2﹣15a.故答案为:6a2﹣15a.12.(4分)若∠A=67°,则∠A的余角= 23° .【解答】解:∵∠A=67°,∴∠A的余角=90°﹣67°=23°.故答案为:23°.13.(4分)在一个不透明的盒子中装有a个除颜色外完全相同的球,其中只有6个白球.若每次将球充分搅匀后,任意摸出1个球记下颜色后再放回盒子,通过大量重复试验后,发现摸到白球的频率稳定在20%左右,则a的值约为 30 .【解答】解:由题意可得,100%=20%,解得,a=30.故答案为:30.14.(4分)如图,A、B两点分别位于一个池塘的两端,点C是AD的中点,也是BE的中点,若DE=15米,则AB= 15 米.【解答】解:∵点C是AD的中点,也是BE的中点,∴AC=DC,BC=EC,在△ACB和△DCE中,,∴△ACB≌△DCE(SAS),∴DE=AB,∵DE=15米,∴AB=15米,故答案为:15.15.(4分)图书馆现有4000本图书供学生借阅,如果每个学生一次借5本,则剩下的书y(本)和借书学生人数x(人)之间的函数关系式是 y=4000﹣5x .【解答】解:由题意可得:y=4000﹣5x,故答案为y=4000﹣5x.16.(4分)如图在△ABC中,BC=8,AB、AC的垂直平分线与BC分别交于E、F两点,则△AEF的周长为 8 .【解答】解:∵AB、AC的垂直平分线与BC分别交于E、F两点,∴AE=BE,AF=CF,∴△AEF的周长=AE+EF+AF=BE+EF+CF=BC=8,故答案为:8.17.(4分)如果定义一种新运算,规定ad﹣bc,请化简: ﹣3 .【解答】解:根据题意得:(x﹣1)(x+3)﹣x(x+2)=x2+3x﹣x﹣3﹣x2﹣2x=﹣3,故答案为:﹣3.三、解答题(一)(本大题3小题,每小题6分,共18分)18.(6分)计算:(1)()﹣1+(π﹣2020)0﹣(﹣1)2020;(2)(3xy3)2•(﹣xy).【解答】解:(1)()﹣1+(π﹣2020)0﹣(﹣1)2020=2+1﹣1=2.(2)(3xy3)2•(﹣xy)=9x2y6•(﹣xy)=﹣9x3y7.19.(6分)如图,如果AD∥BC,∠B=∠C,那么AD是∠EAC的平分线吗?请说明你判别的理由.【解答】解:∵AD∥BC,∴∠EAD=∠B,∠DAC=∠C,又∵∠B=∠C,∴∠EAD=∠DAC,∴AD是∠EAC的平分线.20.(6分)如图,转盘被等分成六个扇形,并在上面依次写上数字1、2、3、4、5、6.(1)若自由转动转盘,当它停止转动时,指针指向偶数区域的概率是多少?(2)请你用这个转盘设计一个游戏,当自由转动的转盘停止时,指针指向区域的概率为.【解答】解:(1)P(指针指向偶数区域);(2)方法一:如图,自由转动转盘,当转盘停止时,指针指向数字5或6所在的区域时则游戏者获胜.方法二:自由转动转盘,当它停止时,指针指向数字大于4的区域时,游戏者获胜.四.解答题(本大题3小题,每小题8分,满分24分)21.(8分)先化简,再求值:[(x+2y)2﹣(x+y)(x﹣y)]÷2y,其中x,y=﹣2.【解答】解:原式=(x2+4xy+4y2﹣x2+y2)÷2y=(5y2+4xy)÷2yy+2x,当x,y=﹣2时,原式=1﹣5=﹣4.22.(8分)如图,在正方形网格上的一个△ABC,且每个小正方形的边长为1(其中点A,B,C均在网格上).(1)作△ABC关于直线MN的轴对称图形△A′B′C′;(2)在MN上画出点P,使得PA+PC最小;(3)求出△ABC的面积.【解答】解:(1)如图,△A′B′C′为所作;(2)如图,点P为所作;(3)△ABC的面积=3×41×33×24×1.23.(8分)如图,△ABC与△DCB中,AC与BD交于点E,且∠A=∠D,AB=DC.(1)求证:△ABE≌△DCE;(2)当∠AEB=60°,求∠EBC的度数.【解答】解:(1)在△ABE和△DCE中,,∴△ABE≌△DCE(AAS);(2)∵△ABE≌△DCE,∴BE=EC,∴∠EBC=∠ECB,∵∠EBC+∠ECB=∠AEB=60°,∴∠EBC=30°.五.解答题(本大题2小题,每小题10分,满分20分)24.(10分)小王周末骑电动车从家里出发去商场买东西,当他骑了一段路时,想起要买一本书,于是原路返回到刚经过的新华书店,买到书后继续前往商场,如图是他离家的距离(米)与时间(分钟)之间的关系示意图,请根据图中提供的信息回答下列问题:(1)在此变化过程中,自变量是 时间 ,因变量是 距离 .(2)小王在新华书店停留了多长时间?(3)买到书后,小王从新华书店到商场的骑车速度是多少?【解答】解:(1)在此变化过程中,自变量是时间,因变量是距离.故答案为:时间;距离; (2)30﹣20=10(分钟).所以小王在新华书店停留了10分钟; (3)小王从新华书店到商场的路程为6250﹣4000=2250米,所用时间为35﹣30=5分钟,小王从新华书店到商场的骑车速度是:2250÷5=450(米/分).25.(10分)如图,在等边三角形ABC的顶点A、C处各有一只蜗牛,它们同时出发,分别以相同的速度由A向B和由C向A爬行,经过t分钟后,它们分别爬行到了D、E处,设DC与BE的交点为F.(1)BE与CD有何数量关系?为什么?(2)问蜗牛在爬行过程中,DC与BE所成的∠BFC的大小有无变化?若有变化,请说明理由;若没有变化,求出∠BFC的大小.【解答】解:(1)BE=CD,理由如下:∵AB=BC=CA,两只蜗牛速度相同,且同时出发,∴CE=AD;∠A=∠BCE=60°,在△ACD和△CBE中,,∴△ACD≌△CBE(SAS),∴BE=CD;(2)DC和BE所成的∠BFC的大小不变.理由如下:∵△ACD≌△CBE,∴∠FBC=∠ACD,∴∠BFC=180°﹣∠FBC﹣∠BCD=180°﹣∠ACD﹣∠BCD=180°﹣∠ACB=120°,∴∠BFC的大小不变,∠BFC=120°.
相关试卷
这是一份2022-2023学年人教版七年级下册数学期末复习题(1),共7页。试卷主要包含了下列比﹣2小的数是,下列运算正确的是,已知点A,与最接近的整数是,《张丘建算经》中有这样一首古诗等内容,欢迎下载使用。
这是一份2022-2023学年北师大版七年级下学期期末数学复习题2(含答案),共20页。试卷主要包含了填空题,解答题等内容,欢迎下载使用。
这是一份2022-2023学年北师大版七年级下学期期末数学复习题4(含答案),共21页。试卷主要包含了填空,解答下列各题等内容,欢迎下载使用。