浙教版七年级下册5.5 分式方程精品同步训练题
展开专题5.4 分式方程及应用(知识解读)
【学习目标】
1. 了解解分式方程的基本思路和解法.
2. 掌握可化为一元一次方程的分式方程的解法.
3. 体会解分式方程过程中的化归思想.
4. 结合利用分式方程解决实际问题的实例,进一步体会方程是刻画实际问题数量关系的一
种重要数学模型
【知识点梳理】
考点1:分式方程的概念
分母中含有未知数的方程叫分式方程.
注意:
(1)分式方程的重要特征:①是等式;②方程里含有分母;③分母中含有未知数.
(2)分式方程和整式方程的区别就在于分母中是否有未知数(不是一般的字母系数).
分母中含有未知数的方程是分式方程,分母中不含有未知数的方程是整式方程.
(3)分式方程和整式方程的联系:分式方程可以转化为整式方程.
考点2:分式方程的解法
解分式方程的一般步骤:
(1)方程两边都乘以最简公分母,去掉分母,化成整式方程(注意:当分母是多项式时,先分解因式,再找出最简公分母);
(2)解这个整式方程,求出整式方程的解;
(3)检验:将求得的解代入最简公分母,若最简公分母不等于0,则这个解是原分式方程的解,若最简公分母等于0,则这个解不是原分式方程的解,原分式方程无解.
考点3:分式方程应用
类型一:工程问题
类型二:行程问题
类型三:销售问题
类型四:方案问题
【典例分析】
【考点1 分式方程定义】
【典例1】(2022春•方城县期中)给出下列方程:,,,,其中分式方程的个数是( )
A.1 B.2 C.3 D.4
【变式1-1】(2021秋•鱼台县期末)下列方程中不是分式方程的是( )
A. B.
C. D.
【变式1-2】(2021秋•西峰区期末)下列关于x的方程是分式方程的是( )
A. B. C. D.
【变式1-3】(2020秋•南岗区期末)下列方程中,是分式方程的是( )
A.+=1 B.x+=2 C.2x=x﹣5 D.x﹣4y=1
【考点2 解分式方程】
【典例2】(2022春•雁塔区校级期末)解方程:
(1); (2)=1.
【变式2-1】(2022春•淮安期末)解分式方程:+3=﹣.
【变式2-2】(2022春•洪泽区期末)解方程:﹣=1.
【变式2-3】(2022春•海州区期末)解分式方程:
(1); (2).
【变式2-4】(2022春•溧阳市期末)解下列分式方程:
(1)=; (2)=﹣3;
(3)﹣=2; (4)+=.
【考点3 分式方程应用类型】
类型一 工程问题
【典例3】(2022春•闵行区校级期末)某工程队承担了修建地铁两个站点间2400米的隧道工程任务,由于采用了新技术,现在每个月比原计划多掘进了180米,因而比原计划提前3个月完成任务.
(1)求完成此项工程原计划每个月掘进多少米?
(2)如果每天的施工费用为2.5万元,那么该工程队现在完成此项工程共需多少万元?(每个月按30天算)
【变式3-1】(2022春•涟水县期末)某校为美化校园环境,计划对面积为1200m2的区域进行绿化,现安排甲、乙两个工程队来完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的1.5倍,并且在独立完成面积为360m2区域的绿化时,甲队比乙队少用2天.求甲、乙两工程队每天能绿化的面积分别是多少m2?
【变式3-2】(2022春•瑶海区期末)某建工集团下有甲、乙两个工程队,现中标承建一段公路,若甲、乙两工程队合做20天可完成;若让两队合做15天后,剩下的工程由甲队独做,还需15天才能完成.
(1)甲、乙两工程队单独完成此项工程各需要多少天?
(2)如果甲工程队施工每天需付施工费10000元,乙工程队施工每天需付施工费26000元,此项工程若由甲工程队先独做若干天后,乙工程队再加入共同完成剩下的工程,则甲工程队至少要独做多少天,才能使施工费不超过680000元?
【变式3-3】(2022•桂林模拟)为了进一步丰富市民的休闲生活,某区政府决定在漓江沿岸扩建5400米绿道并进行招标,根据招标结果,该工程由甲、乙两个工程队参与建设.已知:甲工程队每天完成的工程量是乙队的1.2倍,甲队单独完成工程比乙队单独完成少用10天.
(1)求乙队每天能完成多少米?
(2)若甲、乙两个工程队合作20天后,剩余工程由乙工程队单独完成,求乙工程队还需多少天?
类型二 行程问题
【典例4】(2021•北碚区校级开学)小李从A地出发去相距4.5千米的B地上班,他每天出发的时间都相同.第一天步行去上班结果迟到了5分钟.第二天骑自行车去上班结果早到10分钟.已知骑自行车的速度是步行速度的1.5倍.
(1)求小李步行的速度和骑自行车的速度;
(2)有一天小李骑自行车出发,出发1.5千米后自行车发生故障.小李立即跑步去上班(耽误时间忽略不计)为了至少提前5分钟到达.则跑步的速度至少为多少千米每小时?
【变式4-1】(2020秋•安丘市期末)星期天,小明和小芳从同一小区门口同时出发,沿同一路线去离该小区1800米的少年宫参加活动,为响应“节能环保,绿色出行”的号召,两人都步行,已知小明的速度是小芳的速度的1.2倍,结果小明比小芳早6分钟到达,求小芳的速度.
2.(2012•山西模拟)列方程或方程组解应用题:
为响应低碳号召,肖老师上班的交通方式由自驾车改为骑自行车,肖老师家距学校15千米,因为自驾车的速度是骑自行车速度的4倍,所以肖老师每天比原来早出发45分钟,才能按原时间到校,求肖老师骑自行车每小时走多少千米.
【变式4-2】(2021•扬州模拟)近年来,我市大力发展城市快速交通,小王开车从家到单位有两条路线可选择,路线A为全程25km的普通道路,路线B包含快速通道,全程30km,走路线B比走路线A平均速度提高50%,时间节省6min,求走路线B的平均速度.
类型三:销售问题
【典例5】(泰安)某服装店购进一批甲、乙两种款型时尚T恤衫,甲种款型共用了7800元,乙种款型共用了6400元,甲种款型的件数是乙种款型件数的1.5倍,甲种款型每件的进价比乙种款型每件的进价少30元.
(1)甲、乙两种款型的T恤衫各购进多少件?
(2)商店进价提高60%标价销售,销售一段时间后,甲款型全部售完,乙款型剩余一半,商店决定对乙款型按标价的五折降价销售,很快全部售完,求售完这批T恤衫商店共获利多少元?
【变式5-1】(2022春•田东县期末)“芒果正宗,源自田东”.田东的桂七芒果,皮薄肉细,多汁香甜、营养丰富、品质上乘,被誉为“果中一绝,果之上品”.现某芒果园有甲、乙两支专业采摘队,已知甲队比乙队每天多采摘600公斤芒果,甲队采摘28800公斤芒果所用的天数与乙队采摘19200公斤芒果所用的天数相同.问甲、乙两队每天分别可采摘芒果多少公斤?
【变式5-2】(2022春•锦州期末)2022年北京冬奥会的吉祥物“冰墩墩”以其呆萌可爱、英姿飒爽形象,深受大家喜爱.某商店第一次用3600元购进一批“冰墩墩”玩具,很快售完;该商店第二次购进该“冰墩墩”玩具时,进价提高了20%,同样用3600元购进的数量比第一次少了10件.
(1)求第一次购进的“冰墩墩”玩具每件的进价是多少元;
(2)若两次购进的“冰墩墩”玩具每件售价均为80元,求该商店两次购进的“冰墩墩”玩具全部售完的总利润是多少元?
【变式5-3】(2022春•大观区校级期末)某商场准备购进甲、乙两种商品进行销售,若每个甲商品的进价比每个乙商品的进价少2元,且用80元购进甲商品的数量与用100元购进乙商品的数量相同.
(1)求每个甲、乙两种商品的进价分别是多少元?
(2)若该商场购进甲商品的数量比乙商品的数量的3倍还少5个,且购进甲、乙两种商品的总数量不超过95个,则商场最多购进乙商品多少个?
类型四 方案问题
【典例6】(2021春•桐城市期末)某社区准备建造A,B两类摊位共80个,每个A类摊位的占地面积比每个B类摊位的占地面积多2平方米,建A类摊位每平方米的费用为40元,建B类摊位每平方米的费用为30元,用60平方米建A类摊位的个数恰好是用同样面积建B类摊位个数的.
(1)求每个B类摊位占地面积.
(2)要求建A类摊位的数量不少于26个,且建造两类摊位的总费用不超过18320元.
①共有哪几种建造方案?
②最少费用是 元.
【变式6-1】(2021秋•德江县期中)为了提高产品的附加值,某公司计划将研发生产的1200件新产品进行精加工后再投放市场.现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两间工厂了解情况,获得如下信息:
信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天;
信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍.
根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品?
【变式6-2】(2021•龙马潭区模拟)某商场计划购进一批甲、乙两种玩具,已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同.
(1)求每件甲种、乙种玩具的进价分别是多少元?
(2)商场计划购进甲、乙两种玩具共48件,其中甲种玩具的件数少于乙种玩具的件数,商场决定此次进货的总资金不超过1000元,求商场共有几种进货方案?
【变式6-3】(2021•龙门县模拟)为了创建全国卫生城市,某社区要清理一个卫生死角内的垃圾,租用甲、乙两车运送,两车各运12趟可完成,需支付运费4800元.已知甲、乙两车单独运完此堆垃圾,乙车所运趟数是甲车的2倍,且乙车每趟运费比甲车少200元.
(1)求甲、乙两车单独运完此堆垃圾各需运多少趟?
(2)若单独租用一台车,租用哪台车合算?
【变式6-4】(2021春•花都区校级月考)学校计划选购甲、乙两种图书作为“校园读书节”的奖品.已知甲图书的单价是乙图书单价的1.5倍;用600元单独购买甲种图书比单独购买乙种图书要少10本.
(1)甲、乙两种图书的单价分别为多少元?
(2)若学校计划购买这两种图书共40本,且投入的经费不超过1050元,要使购买的甲种图书数量不少于乙种图书的数量,则共有几种购买方案?
初中数学浙教版七年级下册5.4 分式的加减精品测试题: 这是一份初中数学浙教版七年级下册5.4 分式的加减精品测试题,文件包含专题54分式方程概念及解分式方程专项训练解析版docx、专题54分式方程概念及解分式方程专项训练原卷版docx等2份试卷配套教学资源,其中试卷共14页, 欢迎下载使用。
初中5.4 分式的加减优秀巩固练习: 这是一份初中5.4 分式的加减优秀巩固练习,文件包含专题54分式方程及应用知识解读解析版docx、专题54分式方程及应用知识解读原卷版docx等2份试卷配套教学资源,其中试卷共24页, 欢迎下载使用。
初中浙教版3.5 整式的化简课时训练: 这是一份初中浙教版3.5 整式的化简课时训练,文件包含专题35整式化简求值知识解读原卷版docx、专题35整式化简求值知识解读解析版docx等2份试卷配套教学资源,其中试卷共10页, 欢迎下载使用。