中考数学模拟试卷及答案2套
展开
这是一份中考数学模拟试卷及答案2套,共13页。试卷主要包含了 去年中国GDP,下列计算结果正确的是等内容,欢迎下载使用。
中考数学模拟试题一
一. 选择题(30分)
1.在-2,0,3,这四个数中,最大的数是( )
A.-2 B.0 C.3 D.
2. 去年中国GDP(国内生产总值)总量为636463亿元,用科学计数法表示636463亿为( )。
A.6.36463×1014 B. 6.36463×1013 C. 6.36463×1012 D. 63.6463×1012
3.在下列水平放置的几何体中,其三种视图都不可能是长方形的是( )
A. B. C. D.
4.下列图形既是轴对称图形又是中心对称图形的是( )
A. B. C. D.
5.下列计算结果正确的是( )
A. B.
C. D.
6.为了解某社区居民的用电情况,随机对该社区10户居民进行了调查,下表是这10户居民2017年4月份用电量的调查结果:
那么关于这10户居民用电量(单位:度),下列说法错误的是( )
A.中位数是55 B.众数是60 C. 平均数是54 D.方差是29
7.用一个圆心角为120°,半径为3的扇形作一个圆锥的侧面,则这个圆锥的底面半径为( )
A.1 B. C. D.2
8. 某工程队铺设一条480米的景观路,开工后,由于引进先进设备,工作效率比原计划提高50%,结果提前4天完成任务.若设原计划每天铺设米,根据题意可列方程为( )
A. B.
C. D.
9.如图,已知圆柱底面的周长为,圆柱的高为2,在圆柱的侧面上,过点A和点C嵌有一圈金属丝,则这圈金属丝的周长最小为( )
A. B. C. D.
第9题图 第10题图
10.如图,在△ABC中,AB=AC=10,点D是边BC上一动点(不与B,C重合),∠ADE=∠B=,DE交AC于点E,且。下列给出的结论中,正确的有( )
①△ADE∽△ACD;②当BD=6时,△ABD与△DCE全等;③△DCE为直角三角形时,BD为8或12.5;④。
A.1个 B.2个 C.3个 D.4个
二.填空题。(18分)
11. 函数的自变量的取值范围为_________。
12.已知关于的一元二次方程有一个实数根是1,则这个方程的另一个实数根是__________。
13.已知点在二次函数的图象上,若,则。(填“>”、“=”或“AD,AB=a,AF平分∠DAB,DE⊥AF于点E,CF⊥AF于点F.求DE+CF的值.(用含a的代数式表示)
20.(8分)2017年春,市教育局组织九年级600名学生参加“绿色随州,从我做起”植树活动,每名学生植树4~7棵,活动结束后随机抽查了20名学生每人的植树量,并分为四种类型,A:4棵;B:5棵;C:6棵;D:7棵.将各类的人数绘制成扇形图和条形图,经确认扇形图是正确的,而条形图尚有一处错误.
回答下列问题:
(1) 写出条形图中存在的错误,并说明理由;
(2) 写出这20名学生每人植树量的众数、中位数;
(3) 在求这20名学生每人植树量的平均数时,小明是这样分析的:
第一步:求平均数的公式是;
第二步:在该问题中,;
第三步:(棵).
① 小明的分析是从哪一步开始出现错误的?
② 请你帮他计算出正确的平均数,并估计这600名学生共植树多少棵.
21.(7分)英语听力考试期间,需要杜绝考点周围的噪音,如图,点A是随州市某中学考点,在位于A考点南偏西15°方向距离125米处点C处有一消防队,在听力考试期间,消防队突然接到报警电话,告知在位于点C北偏东75°方向的点F处突发火灾,消防队必须立即赶往救火.已知消防车的警报声传播半径为100米,若消防车的警报声对听力考试造成影响,则消防车必须改道行驶,试问:消防车是否需要改道行驶?请说明理由(取1.732).
22. (7分)如图,在等腰△ABC中,AB=AC,角平分线AD、CE相交于点E,经过C、E两点的⊙O交AC于点G,交BC于点F,GC恰为⊙O的直径.
(1)求证:AD与⊙O相切;
(2)当BC=4,时,求⊙O的半径.
23.(10分)某社区活动中心为鼓励居民加强体育锻炼,准备购买10副某种品牌的羽毛球拍,每副球拍配x(x≥2)个羽毛球,供社区居民免费借用.该社区附近A、B两家超市都有这种品牌的羽毛球拍和羽毛球出售,且每副球拍的标价均为30元,每个羽毛球的标价均为3元,目前两家超市同时在做促销活动:
A超市:所有商品均打九折(按标价的90%)销售;
B超市:买一副羽毛球拍送2个羽毛球.
设在A超市购买羽毛球拍和羽毛球的费用为(元),在B超市购买羽毛球拍和羽毛球的费用为(元).请解答下列问题:
(1)分别写出和与x之间的关系式;
(2)若该活动中心只在一家超市购买,你认为在哪家超市购买更划算?
(3)若每副球拍配15个羽毛球,请你帮助该活动中心设计出最省钱的购买方案.
24. (10分)已知:点P是平行四边形ABCD对角线AC所在直线上的一个动点(点P不与点A、C重合),分别过点A、C向直线BP作垂线,垂足分别为点E、F,点O为AC的中点.
(1)当点P与点O重合时如图1,请明证OE=OF;
(2)直线BP绕点B逆时针方向旋转,当∠OFE=30°时,如图2、图3的位置,猜想线段CF、AE、OE之间有怎样的数量关系?请写出你对图2、图3的猜想,并选择一种情况给予证明.
25.(12分)如图,抛物线y=x2+bx+c与x轴交于A、B两点,B点坐标为(3,0),与y轴交于点C(0,﹣3)
(1)求抛物线的解析式;
(2)点P在抛物线位于第四象限的部分上运动,当四边形ABPC的面积最大时,求点P的坐标和四边形ABPC的最大面积.
(3)直线l经过A、C两点,点Q在抛物线位于y轴左侧的部分上运动,直线m经过点B和点Q,是否存在直线m,使得直线l、m与x轴围成的三角形和直线l、m与y轴围成的三角形相似?若存在,求出直线m的解析式,若不存在,请说明理由.
中考数学模拟试题一答案
17. 解:,
②﹣①得3x=﹣9,
解得x=﹣3,
把x=﹣3代入x+y=1中,求出y=4,
即方程组的解为.
22.
23. 解:(1)设桃树每亩平均收入为x元,牡丹每亩平均收入为y元,
依题意得:
5x+3y=33500
3x+7y=43500
解得:
x=4000
y=4500
答:桃树每亩的收入为4000元,牡丹每亩的平均收入是4500元.
(2)设种植桃树m亩,则种植牡丹面积为(30-m)亩,
依题意得:m>30-m,
解得:m>15,
当15<m≤20时,总收入w=4000m+4500(30-m)+15×100+(m-15)×200≥127500,
解得:15<m≤20,
当m>20时,总收入w=4000m+4500(30-m)+15×100+5×200+(m-20)×300≥127500,
解得:m≤20,(不合题意),
综上所述,种植方案如下:
种植类型
种植面积(亩)
方案一
方案二
方案三
方案四
方案五
桃树
16
17
18
19
20
牡丹
14
13
12
11
10
24.
25. 解:(1)如图1,把A(﹣1,0),B(4,0),C(﹣2,﹣3)代入y=ax2+bx+c中,得:
,
解得:,
则二次函数的解析式y=﹣x2+x+2;
(2)如图2,设直线BC的解析式为y=kx+b,
把B(4,0),C(﹣2,﹣3)代入y=kx+b中得:,
解得:,
∴直线BC的解析式为y=x﹣2,
设E(m,﹣m2+m+2),﹣2<m<4,
∵EG⊥y轴,
∴E和G的纵坐标相等,
∵点G在直线BC上,
当y=﹣m2+m+2时,﹣m2+m+2=x﹣2,
x=﹣m2+3m+8,
则G(﹣m2+3m+8,﹣m2+m+2),
∴EG=﹣m2+3m+8﹣m=﹣m2+2m+8,
∵EG∥AB,
∴∠EGF=∠OBD,
∵∠EFG=∠BOD=90°,
∴△EFG∽△DOB,
∴=,
∵D(0,﹣2),B(4,0),
∴OB=4,OD=2,
∴BD==2,
∴=﹣,
∴△EFG的周长=(﹣m2+2m+8),
=[﹣(m﹣1)2+9],
∴当m=1时,△EFG周长最大,最大值是;
(3)存在点E,
分两种情况:
①若∠EBD=90°,则BD⊥BE,如图3,
设BD的解析式为:y=kx+b,
把B(4,0)、D(0,﹣2)代入得:,
解得:,
∴BD的解析式为:y=x﹣2,
∴设直线EB的解析式为:y=﹣2x+b,
把B(4,0)代入得:b=8,
∴直线EB的解析式为:y=﹣2x+8,
∴,
﹣x2+x+2=﹣2x+8,
解得:x1=3,x2=4(舍),
当x=3时,y=﹣2×3+8=2,
∴E(3,2),
②当BD⊥DE时,即∠EDB=90°,如图4,
同理得:DE的解析式为:y=﹣2x+b,
把D(0,﹣2)代入得:b=﹣2,
∴DE的解析式为:y=﹣2x﹣2,
∴,
解得:,
∴E(8,﹣18)或(﹣1,0),
综上所述,点E(3,2)或(8,﹣18)或(﹣1,0),
故存在满足条件的点E,点E的坐标为(3,2)或(﹣1,0)或(8,18).
中考数学模拟试题二答案
23.
24.解:(1)∵AE⊥PB,CF⊥BP,
∴∠AEO=∠CFO=90°,
在△AEO和△CFO中,
,
∴△AOE≌△COF,
∴OE=OF.
(2)图2中的结论为:CF=OE+AE.
图3中的结论为:CF=OE﹣AE.
选图2中的结论证明如下:
延长EO交CF于点G,
∵AE⊥BP,CF⊥BP,
∴AE∥CF,
∴∠EAO=∠GCO,
在△EOA和△GOC中,
,
∴△EOA≌△GOC,
∴EO=GO,AE=CG,
在RT△EFG中,∵EO=OG,
∴OE=OF=GO,
∵∠OFE=30°,
∴∠OFG=90°﹣30°=60°,
∴△OFG是等边三角形,
∴OF=GF,
∵OE=OF,
∴OE=FG,
∵CF=FG+CG,
∴CF=OE+AE.
选图3的结论证明如下:
延长EO交FC的延长线于点G,
∵AE⊥BP,CF⊥BP,
∴AE∥CF,
∴∠AEO=∠G,
在△AOE和△COG中,
,
∴△AOE≌△COG,
∴OE=OG,AE=CG,
在RT△EFG中,∵OE=OG,
∴OE=OF=OG,
∵∠OFE=30°,
∴∠OFG=90°﹣30°=60°,
∴△OFG是等边三角形,
∴OF=FG,
∵OE=OF,
∴OE=FG,
∵CF=FG﹣CG,
∴CF=OE﹣AE.
25.解:
(1)把B、C两点坐标代入抛物线解析式可得,解得,
∴抛物线解析式为y=x2﹣2x﹣3;
(2)如图1,连接BC,过Py轴的平行线,交BC于点M,交x轴于点H,
在y=x2﹣2x﹣3中,令y=0可得0=x2﹣2x﹣3,解得x=﹣1或x=3,
∴A点坐标为(﹣1,0),
∴AB=3﹣(﹣1)=4,且OC=3,
∴S△ABC=AB•OC=×4×3=6,
∵B(3,0),C(0,﹣3),
∴直线BC解析式为y=x﹣3,
设P点坐标为(x,x2﹣2x﹣3),则M点坐标为(x,x﹣3),
∵P点在第四限,
∴PM=x﹣3﹣(x2﹣2x﹣3)=﹣x2+3x,
∴S△PBC=PM•OH+PM•HB=PM•(OH+HB)=PM•OB=PM,
∴当PM有最大值时,△PBC的面积最大,则四边形ABPC的面积最大,
∵PM=﹣x2+3x=﹣(x﹣)2+,
∴当x=时,PMmax=,则S△PBC=×=,
此时P点坐标为(,﹣),S四边形ABPC=S△ABC+S△PBC=6+=,
即当P点坐标为(,﹣)时,四边形ABPC的面积最大,最大面积为;
(3)如图2,设直线m交y轴于点N,交直线l于点G,
则∠AGP=∠GNC+∠GCN,
当△AGB和△NGC相似时,必有∠AGB=∠CGB,
又∠AGB+∠CGB=180°,
∴∠AGB=∠CGB=90°,
∴∠ACO=∠OBN,
在Rt△AON和Rt△NOB中
∴Rt△AON≌Rt△NOB(ASA),
∴ON=OA=1,
∴N点坐标为(0,﹣1),
设直线m解析式为y=kx+d,把B、N两点坐标代入可得,解得,
∴直线m解析式为y=x﹣1,
即存在满足条件的直线m,其解析式为y=x﹣1.
当Q点在x轴上方时直线m的解析式为:y=-x+1
相关试卷
这是一份中考数学模拟试卷与答案,共11页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份中考数学模拟试卷及答案,共11页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份中考数学模拟试卷及答案,共7页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。