终身会员
搜索
    上传资料 赚现金
    2023年广东省汕头市潮阳区城南中学中考数学一模试卷(含答案)
    立即下载
    加入资料篮
    2023年广东省汕头市潮阳区城南中学中考数学一模试卷(含答案)01
    2023年广东省汕头市潮阳区城南中学中考数学一模试卷(含答案)02
    2023年广东省汕头市潮阳区城南中学中考数学一模试卷(含答案)03
    还剩16页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2023年广东省汕头市潮阳区城南中学中考数学一模试卷(含答案)

    展开
    这是一份2023年广东省汕头市潮阳区城南中学中考数学一模试卷(含答案),共19页。试卷主要包含了平方千米等内容,欢迎下载使用。

    2023年广东省汕头市潮阳区城南中学中考数学一模试卷
    一.选择题(共10小题,满分30分,每小题3分)
    1.(3分)﹣2022的倒数是(  )
    A.﹣2022 B.2022 C. D.
    2.(3分)地球上的海洋面积约三亿六千一百万平方千米,用科学记数法表示为(  )平方千米.
    A.361×106 B.36.1×107 C.3.61×108 D.0.361×109
    3.(3分)如图所示,从上面看该几何体的形状图为(  )

    A. B.
    C. D.
    4.(3分)下列各式变形中,是因式分解的是(  )
    A.a2﹣2ab+b2﹣1=(a﹣b)2﹣1
    B.2x2+2x=2x2(1+)
    C.(x+2)(x﹣2)=x2﹣4
    D.x4﹣1=(x2+1)(x+1)(x﹣1)
    5.(3分)已知一组数据:2,5,x,7,9的平均数是6,则这组数据的众数是(  )
    A.9 B.7 C.5 D.2
    6.(3分)已知关于x的不等式组无解,则m的取值范围是(  )
    A.m≤3 B.m>3 C.m<3 D.m≥3
    7.(3分)已知直线m∥n,将一块含30°角的直角三角板ABC,按如图所示方式放置,其中A、B两点分别落在直线m、n上,若∠1=25°,则∠2的度数是(  )

    A.25° B.30° C.35° D.55°
    8.(3分)若x=﹣1是关于x的一元二次方程ax2+bx﹣1=0的一个根,则a﹣b的值为(  )
    A.1 B.﹣2 C.﹣1 D.2
    9.(3分)如图,在菱形ABCD中,点E是BC的中点,DE与AC交于点F,若AB=6,∠B=60°,则AF的长为(  )

    A.3 B.3.5 C.3 D.4
    10.(3分)如图,在△ABC中,∠C=90°,AC=BC=3cm,动点P从点A出发,以cm/s的速度沿AB方向运动到点B,动点Q同时从点A出发,以1cm/s的速度沿折线AC→CB方向运动到点B.设△APQ的面积为y(cm2),运动时间为x(s),则下列图象能反映y与x之间关系的是(  )

    A. B.
    C. D.
    二.填空题(共6小题,满分18分,每小题3分)
    11.(3分)若代数式有意义,则x的取值范围是    .
    12.(3分)小明和小华玩“石头、剪子、布”的游戏,若随机出手一次,则小华获胜的概率是   
    13.(3分)如图,两弦AB、CD相交于点E,且AB⊥CD,若∠B=60°,则∠A等于   度.

    14.(3分)若|x﹣2y|+(x+2)2=0,则2x﹣y+1的值为   .
    15.(3分)如图,在平面直角坐标系中,点A的坐标为(﹣2,0),△ABO是直角三角形,∠AOB=60°.现将Rt△ABO绕原点O按顺时针方向旋转到Rt△A′B′O的位置,则此时边OB扫过的面积为    .

    16.(3分)谢尔宾斯基地毯,最早是由波兰数学家谢尔宾斯基制作出来的:把一个正三角形分成全等的4个小正三角形,挖去中间的一个小三角形;对剩下的3个小正三角形再分别重复以上做法…将这种做法继续进行下去,就得到小格子越来越多的谢尔宾斯基地毯(如图).若图1中的阴影三角形面积为1,则图5中的所有阴影三角形的面积之和是   .

    三.解答题(共9小题,满分72分)
    17.(6分)计算:.
    18.(6分)先化简,再求值:(1﹣)•,其中x=2.
    19.(6分)如图,已知等腰△ABC中,AB=AC.以C为圆心,CB的长为半径作弧,交AB于点D.分别以B、D为圆心,大于BD的长为半径作弧,两弧交于点E.作射线CE交AB于点M.分别以A、C为圆心,CM、AM的长为半径作弧,两弧交于点N.连接AN、CN
    (1)求证:AN⊥CN
    (2)若AB=5,tanB=3,求四边形AMCN的面积.

    20.(8分)在矩形纸片ABCD中,AB=6,BC=8.将矩形纸片折叠,使B与D重合.
    (1)求证△DGH是等腰三角形;
    (2)求折痕GH的长.

    21.(8分)为了传承中华优秀传统文化,培养学生自主、团结协作能力,某校推出了以下四个项目供学生选择:A.家乡导游;B.艺术畅游;C.体育世界;D.博物旅行.学校规定:每个学生都必须报名且只能选择其中一个项目,学校对某班学生选择的项目情况进行了统计,并绘制了如图两幅不完整的统计图,请结合统计图中的信息,解答下列问题:

    (1)求该班学生总人数为   ;
    (2)B项目所在扇形的圆心角的度数为   ;
    (3)将条形统计图补充完整;
    (4)该校有1200名学生,请你估计选择“博物旅行”项目学生的人数.
    22.(8分)空气净化器越来越被人们认可,某商场购进A、B两种型号的空气净化器,如果销售5台A型和10台B型空气净化器的销售总价为20000元,销售10台A型和5台B型空气净化器的销售总价为17500元.
    (1)求每台A型空气净化器和B型空气净化器的销售单价;
    (2)该商场计划一次购进两种型号的空气净化器共100台,其中B型空气净化器的进货量不超过A型空气净化器的2倍,设购进A型空气净化器m台,这100台空气净化器的销售总价为y元.
    ①求y关于m的函数关系式;
    ②当销售总价最大时,该公司购进A型、B型空气净化器各多少台?
    (3)在(2)的条件下,若A型空气净化器每台的进价为800元,B型空气净化器每台的进价z(元)满足z=﹣10m+700的关系式,则销售完这批空气净化器能获取的最大利润是多少元?
    23.(10分)已知抛物线y=ax2+bx+3经过A(﹣3,0),B(﹣1,0)两点(如图1),顶点为M.

    (1)a、b的值;
    (2)设抛物线与y轴的交点为Q(如图1),直线y=﹣2x+9与直线OM交于点D.现将抛物线平移,保持顶点在直线OD上.当抛物线的顶点平移到D点时,Q点移至N点,求抛物线上的两点M、Q间所夹的曲线扫过的区域的面积;
    (3)设直线y=﹣2x+9与y轴交于点C,与直线OM交于点D(如图2).现将抛物线平移,保持顶点在直线OD上.若平移的抛物线与射线CD(含端点C)没有公共点时,试探求其顶点的横坐标的取值范围.
    24.(10分)如图,△ABC为⊙O的内接三角形,其中AB为⊙O的直径,过点A作⊙O的切线PA.
    (1)求证:∠PAC=∠ABC;
    (2)若∠PAC=30°,AC=3,求劣弧AC的长.

    25.(10分)如图,△ABC和△DEF是两个全等的等腰直角三角形,∠BAC=∠EDF=90°,△DEF的顶点E与△ABC的斜边BC的中点重合,将△DEF绕点E旋转,旋转过程中,线段DE与线段AB相交于点P,线段EF与射线CA相交于点Q.
    (1)如图①,当点Q在线段AC上时,且AP=AQ,求证:△BPE≌△CQE;
    (2)如图②,当点Q在线段CA的延长线上时,求证:△BPE∽△CEQ;
    (3)在(2)的条件下,若BP=a,CQ=a时,求点P、Q两点间的距离.(用含a的代数式表示)


    2023年广东省汕头市潮南区城南中学中考数学一模试卷
    参考答案与试题解析
    一.选择题(共10小题,满分30分,每小题3分)
    1. 解:﹣2022的倒数是﹣.
    故选:D.
    2. 解:用科学记数法表示三亿六千一百万=361000000=3.61×108,
    故选:C.
    3. 解:根据能看见的轮廓线用实线表示,看不见的轮廓线用虚线表示,
    从上面看到的是矩形,且有看不见的轮廓线,
    因此选项C中的图形符合题意;
    故选:C.
    4. 解:A a2﹣2ab+b2﹣1=(a﹣b)2﹣1中不是把多项式转化成几个整式积的形式,故A错误;
    B 2x2+2x=2x2(1+)中不是整式,故B错误;
    C (x+2)(x﹣2)=x2﹣4是整式乘法,故C错误;
    Dx4﹣1=(x2+1)(x2﹣1)=(x2+1)(x+1)(x﹣1),故D正确.
    故选:D.
    5. 解:∵数据2,5,x,7,9的平均数为6,
    ∴x=6×5﹣2﹣5﹣7﹣9=7,
    ∴这组数据的众数为7;
    故选:B.
    6. 解:解不等式3x﹣1<4(x﹣1),得:x>3,
    ∵不等式组无解,
    ∴m≤3,
    故选:A.
    7. 解:∵直线m∥n,
    ∴∠3=∠1=25°,
    又∵三角板中,∠ABC=60°,
    ∴∠2=60°﹣25°=35°,
    故选:C.

    8. 解:把x=﹣1代入方程ax2+bx﹣1=0得a﹣b﹣1=0,
    所以a﹣b=1.
    故选:A.
    9. 解:
    ∵在菱形ABCD中,AB=6,∠B=60°
    ∴AB=BC=AD=AC=6
    ∵点E是BC的中点
    ∴=3
    在△AFD和△CFE中
    ∠AFD=∠EFC
    ∠FAD=∠FCE
    ∴△AFD∽△CFE

    ∵CF=6﹣AF
    ∴,
    代入整理得3AF=12,得AF=4
    故选:D.
    10. 解:(1)过点Q作QD⊥AB于点D,
    ①如图1,当点Q在AC上运动时,即0≤x≤3,

    由题意知AQ=x、AP=x,
    ∵∠A=45°,
    ∴QD=AQ=x,
    则y=•x•x=x2;
    ②如图2,当点Q在CB上运动时,即3<x≤6,此时点P与点B重合,

    由题意知BQ=6﹣x、AP=AB=3,
    ∵∠B=45°,
    ∴QD=BQ=(6﹣x),
    则y=×3×(6﹣x)=﹣x+9;
    故选:D.
    二.填空题(共6小题,满分18分,每小题3分)
    11. 解:由题意得:2﹣3x≥0且2x+1≠0,
    解得:x≤且x≠﹣,
    故答案为:x≤且x≠﹣.
    12. 解:画树状图得:

    ∵共有9种等可能的结果,小华获胜的情况数是3种,
    ∴小华获胜的概率是:=,
    故答案为:.
    13. 解:∵∠B=60°,
    ∴∠C=∠B=60°,
    ∵AB⊥CD,
    ∴∠AEC=90°,
    ∴∠A=30°,
    故答案为:30.
    14. 解:∵|x﹣2y|+(x+2)2=0,
    ∴x﹣2y=0,x+2=0,
    解得:x=﹣2,y=﹣1,
    则2x﹣y+1的值为:﹣4+1+1=﹣2.
    故答案为:﹣2.
    15. 解:∵点A的坐标(﹣2,0),
    ∴OA=2,
    ∵△ABO是直角三角形,∠AOB=60°,
    ∴∠OAB=30°,
    ∴OB=OA=1,
    ∴边OB扫过的面积为:=π.
    故答案为:π.
    16. 解:图2阴影部分面积=1﹣=,
    图3阴影部分面积=×=()2,
    图4阴影部分面积=×()2=()3,
    图5阴影部分面积=×()3=()4=.
    故答案为:.
    三.解答题(共9小题,满分72分)
    17. 解:原式=1﹣1+1﹣3
    =﹣2.
    18. 解:原式=()

    =,
    当x=2时,
    原式==﹣2.
    19. (1)证明:由作图可知:CN=AM,AN=CM,
    ∴四边形AMCN是平行四边形,
    ∵CM⊥AB,
    ∴∠AMC=90°,
    ∴四边形AMCN是矩形,
    ∴∠ANC=90°,
    ∴AN⊥CN.

    (2)在Rt△CBM中,∵tan∠B==3,
    ∴可以假设BM=k,CM=3k,
    ∵AC=AB=5,
    ∴AM=5﹣k,
    在Rt△ACM中,∵AC2=CM2+AM2,
    ∴25=(3k)2+(5﹣k)2,
    解得k=1或0(舍弃),
    ∴CM=3,AM=4,
    ∴四边形AMCN的面积=CM•AM=12.
    20. (1)证明:如图,矩形纸片折叠后,设A与F重合,过点G作GE⊥BC于点E,

    由折叠的性质得:DH=BH,FD=BA,FG=AG,∠GHB=∠GHD,
    ∵四边形ABCD是矩形,
    ∴∠A=∠B=90°,AB=CD,AD=BC,AD∥BC,
    ∴∠DGH=∠GHB,
    ∴∠DGH=∠GHD,
    ∴GD=HD,
    ∴△DGH是等腰三角形.
    (2)解:∵GD=HD,
    ∴GD=DH=BH,
    ∵AB=6,BC=8,
    ∴DF=CD=6,AD=8,
    设BH=x,则HC=8﹣x,由勾股定理得:x2=(8﹣x)2+62,
    解得:,
    ∴,
    ∴,
    ∴,
    在Rt△GEH中,由勾股定理得:,
    ∴.
    21. 解:(1)12÷30%=40(人),
    故答案为:40;
    (2)360°×=126°,
    故答案为:126°;
    (3)40﹣12﹣14﹣4=10(人),补全条形统计图如图所示:

    (4)1200×=120(人),
    答:该校有1200名学生中选择“博物旅行”项目的大约有120人.
    22. (1)解:设每台A型空气净化器销售单价为x元,B型空气净化器的销售单价为y元,根据题意得:

    解得:,
    答:每台A型空气净化器销售单价为1000元,B型空气净化器的销售单价为1500元;
    (2)①由题意可知购进A型空气净化器m台,则购进B型空气净化器(100﹣m)台,则有:
    y=1000m+1500(100﹣m),即y=﹣500m+150000;
    ②∵100﹣m≤2m,
    ∴m≥,
    ∵m取正整数,
    ∴当m=34时销售总价最大,最大值为133000元;
    (3)设销售完这批空气净化器能获取的利润是w元,由题意得:
    w=(1000﹣800)m+(1500+10m﹣700)(100﹣m)
    =﹣10m2+400m+80000
    =﹣10(m﹣20)2+84000,
    ∵a=﹣10,
    ∴当m大于20时,w随m的增大而减小,
    ∵m≥,
    ∴当m=34时,w有最大值为82040元.
    答:销售完这批空气净化器能获取的最大利润是82040元.
    23. 解:(1)将A(﹣3,0),B(﹣1,0)代入抛物线y=ax2+bx+3中,得:

    解得:a=1、b=4.

    (2)连接MQ、QD、DN,由图形平移的性质知:QNMD,即四边形MQND是平行四边形;
    由(1)知,抛物线的解析式:y=x2+4x+3=(x+2)2﹣1,则点M(﹣2,﹣1)、Q(0,3);
    则,直线OM:y=x,联立直线y=﹣2x+9,得:

    解得.
    则D(,);
    曲线扫过的区域的面积:S=S▱MQND=2S△MQD=2××OQ×|xM﹣xD|=3×|﹣2﹣|=.

    (3)由于抛物线的顶点始终在y=x上,可设其坐标为(h,h),设平移后的抛物线解析式为y=(x﹣h)2+h;
    ①当平移后抛物线对称轴右侧部分经过点C(0,9)时,有:
    h2+h=9,解得:h=(依题意,舍去正值)
    ②当平移后的抛物线与直线y=﹣2x+9只有一个交点时,依题意:

    消去y,得:x2﹣(2h﹣2)x+h2+h﹣9=0,
    则:△=(2h﹣2)2﹣4(h2+h﹣9)=﹣10h+40=0,解得:h=4
    结合图形,当平移的抛物线与射线CD(含端点C)没有公共点时,h<或h>4.

    24. 解:(1)∵AB是直径,
    ∴∠ACB=90°,
    ∵PA是⊙O切线,
    ∴OA⊥PA,
    ∴∠BAP=90°,
    ∴∠PAC+∠BAC=90°,∠BAC+∠B=90°,
    ∴∠PAC=∠B.

    (2)连接OC.
    ∵∠PAC=30°,
    ∴∠B=∠PAC=30°,
    ∴∠AOC=2∠B=60°,
    ∵OA=OC,
    ∴△AOC是等边三角形,
    ∴OA=AC=3,
    ∴的长==π,

    25. (1)证明:如图1中,

    ∵△ABC和△DEF是两个全等的等腰直角三角形,
    ∴∠B=∠C=∠DEF=45°,
    ∵∠BEQ=∠BEP+∠DEF=∠EQC+∠C,
    ∴∠BEP+45°=∠EQC+45°,
    ∴∠BEP=∠EQC,
    ∵AP=AQ,AB=AC,
    ∴BP=CQ,
    ∵∠B=∠C,
    ∴△BPE≌△CEQ(AAS);

    (2)如图2,

    ∵∠BEQ=∠EQC+∠C,即∠BEP+∠DEF=∠EQC+∠C,
    ∴∠BEP+45°=∠EQC+45°,
    ∴∠BEP=∠EQC,
    又∵∠B=∠C,
    ∴△BPE∽△CEQ;

    (3)解:∵△BPE∽△CEQ,
    ∴=,
    ∵BE=CE,
    ∴=,
    解得:BE=CE=a,
    ∴BC=3a,
    ∴AB=AC=BC=×3a=3a,
    ∴AQ=CQ﹣AC=a﹣3a=a,AP=AB﹣BP=3a﹣a=2a,
    在Rt△APQ中,PQ===a.


    相关试卷

    2023年广东省汕头市潮阳区城南中学中考一模数学试题(含解析): 这是一份2023年广东省汕头市潮阳区城南中学中考一模数学试题(含解析),共24页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    2023年广东省汕头市金平区金信中学中考数学一模试卷(含答案): 这是一份2023年广东省汕头市金平区金信中学中考数学一模试卷(含答案),共18页。

    2023年广东省汕头市金平区爱华中学中考数学一模试卷(含答案): 这是一份2023年广东省汕头市金平区爱华中学中考数学一模试卷(含答案),共17页。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map