终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    2022-2023学年四川省内江市内江市第六中学高一下学期期中数学试题含解析

    立即下载
    加入资料篮
    2022-2023学年四川省内江市内江市第六中学高一下学期期中数学试题含解析第1页
    2022-2023学年四川省内江市内江市第六中学高一下学期期中数学试题含解析第2页
    2022-2023学年四川省内江市内江市第六中学高一下学期期中数学试题含解析第3页
    还剩16页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022-2023学年四川省内江市内江市第六中学高一下学期期中数学试题含解析

    展开

    这是一份2022-2023学年四川省内江市内江市第六中学高一下学期期中数学试题含解析,共19页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。
    2022-2023学年四川省内江市内江市第六中学高一下学期期中数学试题 一、单选题1.已知向量满足,则    A B C D【答案】D【分析】直接根据平面向量夹角的计算公式计算即可.【详解】因为所以.故选:D.2.已知,则    ).A B C D【答案】B【分析】利用诱导公式由求解.【详解】因为所以故选:B.3.在中,边的中点,则(    A B C D【答案】C【分析】利用向量加法的平行四边形法则可得,从而可得,即求.【详解】因为边的中点,所以因为,所以故选:C4.数学与音乐有着紧密的关联,我们平时听到的乐音一般来说并不是纯音,而是由多种波叠加而成的复合音.如图为某段乐音的图象,则该段乐音对应的函数解析式可以为(    A BC D【答案】A【分析】根据函数的奇偶性,再利用特殊值的函数值,逐一判断即可.【详解】对于A,函数因为,所以函数为奇函数,,故A符合图象;对于B,函数因为,所以函数为奇函数,,故B不符题意;对于C,函数因为,故C不符题意;对于D,当时,,故D不符题意.故选:A.5.已知函数,现给出下列四个结论,其中正确的是(    A.函数的最小正周期为B.函数的最大值为2C.函数上单调递增D.将函数的图象向右平移个单位长度;所得图象对应的解析式为【答案】C【分析】首先利用三角恒等变换化简函数,再根据函数的性质依次判断选项【详解】对于AB所以的最小正周期为的最大值为1,故A错误,B错误,对于C,当时,因为上单调递增,所以函数上单调递增,故C正确;对于D,将函数的图像向右平移个单位长度,所得图像对应的函数解析式为,故D不正确,故选:C6.若函数在区间上存在最小值-2.则非零实数的取值范围是(    A B C D【答案】C【解析】两种情况,结合三角函数的性质即可得出结论.【详解】解:由已知可得:时,函数在区间上存在最小值-2,可得时,函数在区间上存在最小值-2,可得:综上所述,非零实数的取值范围故选:C【点睛】本题主要考查三角函数的性质,考查分类讨论的思想方法,属于中档题.7.已知向量满足,且为任意向量,则的最小值为(    A.-2 B C.-3 D【答案】B【分析】由已知可得向量夹角为,可取,设,利用配方法求的最小值.【详解】,且,设向量夹角为,由,得在平面直角系中,取,满足,且,则所以当时,有最小值.故选:B.8.人脸识别技术应用在各行各业,改变着人类的生活,而所谓人脸识别,就是利用计算机分析人脸视频或者图像,并从中提取出有效的识别信息,最终判别人脸对象的身份.在人脸识别中为了检测样本之间的相似度主要应用距离的测试,常用的测量距离的方式有曼哈顿距离和余弦距离.假设二维空间中有两个点O为坐标原点,余弦相似度similarity为向量夹角的余弦值,记作,余弦距离为.已知,若PQ的余弦距离为QR的余弦距离为,则    A7 B C4 D【答案】A【分析】由题设,利用向量夹角公式求得,根据新定义及正余弦齐次运算求目标式的值.【详解】所以,故整理得.故选:A 二、多选题9.下列说法正确的是(    A.若,则 B.零向量与任意向量平行C D.在正六边形中,【答案】AB【分析】根据向量的定义、向量的线性运算法则、向量垂直与数量积的关系判断各选项.【详解】易得AB正确;C错误;在正六边形中,D错误.故选:AB10.若函数在一个周期内的图象如图所示,则(    A的最小正周期为B的增区间是CD.将的图象上所有点的横坐标变为原来的倍(纵坐标不变)得到的图象【答案】ABD【分析】结合图象根据正弦函数的图象和性质逐项进行分析即可求解.【详解】由图象可知:,所以,则又因为函数图象过点,所以,则,所以又因为,所以,则函数解析式为:.对于,函数的最小正周期,故选项正确;对于,因为,令解得:所以函数的增区间是,故选项正确;对于,因为函数的最小正周期,则,所以,故选项错误;对于,将的图象上所有点的横坐标变为原来的倍(纵坐标不变)得到,故选项正确,故选:.11的内角ABC的对边分别为abc,则下列命题为真命题的是(    ).A.若,则B.若,则是钝角三角形C.若,则为等腰三角形D.若,则满足条件的三角形有且只有一个【答案】ABD【分析】由正弦定理结合结论大角对大边可判断A;由余弦定理结合正弦定理的边角互换可判断B;由正弦定理的边角互换结合二倍角的正弦公式可判断C;由余弦定理求出可判断D.【详解】A选项,根据结论大角对大边,则有又因为正弦定理,所以,故A正确;B选项,由可得为钝角三角形,故B正确;C选项,由可得是直角三角形或等腰三角形,故C错误;D选项,由,解得,满足条件的三角形有且只有一个,故D正确.故选:ABD12.筒车是我国古代发明的一种水利灌溉工具,因其经济环保,至今还在农业生产中使用.如图,一个半径为6米的筒车逆时针匀速转动,其圆心O距离水面3米,已知筒车每分钟转动1圈,如果当筒车上一盛水桶M(视为质点)从水中浮现时(图中点)开始计时,经过t秒后,盛水桶M运动到P点,则下列说法正确的是(    A.当秒时,米;B.在转动一周内,盛水桶到水面的距离不低于6米的持续时间为20秒;C.当时,盛水桶距水面的最大距离为米;D.盛水桶运动15秒后筒车上另一盛水桶恰好露出水面,则转动中两盛水桶高度差的最大值为米.【答案】BCD【分析】以水轮所在平面为坐标平面,以水轮轴心为坐标原点,以平行于水面的直线为轴建立平面直角坐标系,求出点距离水面的高度关于时间的函数解析式,再根据三角函数的性质一一分析即可.【详解】解:以水轮所在平面为坐标平面,以水轮轴心为坐标原点,以平行于水面的直线为轴建立平面直角坐标系,距离水面的高度关于时间的函数为,解又水轮每分钟转动一周,则,得对于A:当时,,又,故A错误;对于B:令,则,所以解得,则在转动一圈内,盛水桶到水面的距离不低于米以上的持续时间为秒,故B正确;对于C,当,则,则所以,故C正确;设盛水桶运动时间为,则另一桶为所以,故D正确;故选:BCD 三、填空题13.已知在ABC中,,则角C的度数为________.【答案】120°【分析】由已知条件,结合正弦定理可得,不妨设,利用余弦定理求得,进而得解.【详解】由已知得,由正弦定理的,,不妨设,,=120°故答案为:120°.14.已知,则向量方向上的投影向量的坐标为_____【答案】【分析】先求得向量的坐标,再根据投影向量的定义即可求得答案.【详解】因为所以所以所以向量方向上的投影向量为.故答案为:15.已知的内角的对边分别为,若,且的面积是___________.【答案】【分析】利用同角三角函数计算出的值,利用三角形的面积公式和条件可求出的值,再利用余弦定理求出的值.【详解】,且的面积是由余弦定理得.故答案为【点睛】本题考查利用余弦定理解三角形,同时也考查了同角三角函数的基本关系、三角形面积公式的应用,考查运算求解能力,属于中等题.16.下列命题:为锐角,则实数的取值范围是若非零向量,且,则为等边三角形;若单位向量的夹角为60°,则当取最小值时,已知O是平面上一定点,ABC是平面上不共线的三个点,动点满足,则动点一定通过的重心;如果内接于半径为的圆,且,则的面积的最大值为.其中正确的序号为_______________________【答案】②④⑤【分析】为锐角,则不共线,列式求解可判断;由条件可知的角平分线与垂直,为等腰三角形,又,所以,即可判断,利用二次函数的性质求解可判断;记BC中点为E,则,故共线,而直线AE的重心,即可判断;由条件结合正弦定理得,可得角C,由余弦定理结合基本不等式可得,进而由三角形面积公式求解可判断⑤.【详解】对于,由因为为锐角,故不共线,所以,解得,故错误;对于,因为非零向量,所以的角平分线与垂直,为等腰三角形,又,所以,所以为等边三角形,故正确;对于时,取得最小值,故错误;对于,已知是平面上一定点,是平面上不共线的三个点,动点满足BC中点为E,则,则,故共线,而直线AE的重心,故动点P一定通过的重心,故正确;对于根据正弦定理,得,可得C为三角形的内角,C的大小为由余弦定理可得,当且仅当时等号成立,,即面积的最大值为,故正确.故答案为:②④⑤. 四、解答题17.已知是同一平面内的三个向量,其中1)若,求2)若共线,求的值.【答案】1;(2【分析】1)利用向量的线性运算和向量垂直的坐标表示计算求得的值,然后计算模;2)利用向量的线性运算和向量共线的坐标表示计算求得的值.【详解】1)因为2)由已知:18.已知函数(1)求函数的对称轴和对称中心;(2),求的值.【答案】(1)(2)7 【分析】1)利用诱导公式,降幂公式和辅助角公式化简函数解析式,利用三角函数的性质求得结果;2)由条件求得,根据的取值范围得到,再利用两角和的正切公式进行解答即可.【详解】1,则所以的对称轴为,则所以函数的对称中心为.2,又19.已知函数.(1)的最大值及相应的值;(2)设函数,如图,点分别是函数图像的零值点、最高点和最低点,求的值.【答案】(1)(2) 【分析】1)整理函数的解析式,结合三角函数的性质,即可求解;2)利用题意求得,在直角中,即可求解.【详解】1)解:由题意,函数所以函数的最大值为,此时,即.2)由题意,函数 轴于因为 所以,可得在直角中,可得. 20.已知平面向量,其中(1)求函数的单调增区间;(2)将函数的图象所有的点向右平移个单位,再将所得图象上各点横坐标缩短为原来的(纵坐标不变),再向下平移1个单位得到的图象,若上恰有2个解,求m的取值范围.【答案】(1)(2) 【分析】1)根据数量积的坐标表示及三角恒等变换公式将函数化简,再结合余弦函数的性质计算可得;2)根据三角函数变换规则得到的解析式,再根据的取值范围求出的取值范围,再根据余弦函数的性质及图象计算可得;【详解】1)解:因为所以,解得又因为所以函数的单调增区间为:2)解:因为所以将函数的图象所有的点向右平移个单位得到将所得图象上各点横坐标缩短为原来的 (纵坐标不变)再向下平移个单位得到又因为,所以,解得,解得即函数上单调递增,在上单调递减,且作出图像可得:所以的取值范围21.在这三个条件中任选一个,补充在下面的问题中,并解答.的内角ABC的对边分别为abc,已知______(1)求角C的大小.(2),求的取值范围.注:如果选择多个条件分别解答,那么按第一个解答计分.【答案】(1)(2) 【分析】1)选择条件利用余弦定理化简整理可得,得;选择条件,利用正弦定理角化边即可得,即;选择条件,利用正弦定理和三角恒等变换可得,即;(2)由(1)中结论利用正弦定理可知,,化简得即可求得其范围.【详解】1)选择条件由余弦定理得整理得所以由余弦定理得又因为,所以选择条件由正弦定理得,整理得由余弦定理得又因为,所以选择条件由正弦定理得整理得所以因为,所以显然,所以又因为,所以2)因为所以由正弦定理得,即因为,所以所以因为,所以,所以的取值范围是22.如图,有一景区的平面图是一个半圆形,其中O为圆心,直径的长为CD两点在半圆弧上,且,设1)当时,求四边形的面积.2)若要在景区内铺设一条由线段组成的观光道路,则当为何值时,观光道路的总长l最长,并求出l的最大值.【答案】1;(25【分析】1)把四边形分解为三个等腰三角形:,利用三角形的面积公式即得解;2)利用表示(1)中三个等腰三角形的顶角,利用正弦定理分别表示,令,转化为二次函数的最值问题,即得解.【详解】1)连结,则四边形的面积为2)由题意,在中,,由正弦定理同理在中,,由正弦定理时,即的最大值为5【点睛】本题考查了三角函数和解三角形综合实际应用问题,考查了学生综合分析,数学建模,转化划归,数学运算能力,属于较难题 

    相关试卷

    2022-2023学年四川省内江市高一(下)期末数学试卷(含解析):

    这是一份2022-2023学年四川省内江市高一(下)期末数学试卷(含解析),共19页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。

    2022-2023学年四川省内江市第六中学高二下学期期中考试数学(文)试题含解析:

    这是一份2022-2023学年四川省内江市第六中学高二下学期期中考试数学(文)试题含解析,共15页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    2022-2023学年四川省内江市威远县威远中学校高一下学期期中数学试题含解析:

    这是一份2022-2023学年四川省内江市威远县威远中学校高一下学期期中数学试题含解析,共14页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map