2021-2022学年四川省乐山市沫若中学高二下学期第二次月考数学(文)试题含解析
展开
这是一份2021-2022学年四川省乐山市沫若中学高二下学期第二次月考数学(文)试题含解析,文件包含四川省乐山市沫若中学2021-2022学年高二下学期第二次月考数学文试题Word版含解析docx、四川省乐山市沫若中学2021-2022学年高二下学期第二次月考数学文试题Word版无答案docx等2份试卷配套教学资源,其中试卷共32页, 欢迎下载使用。
2021级高二下5月月考数学试卷(文)一、单选题(每题5分,总计60分)1. 复数 (为虚数单位)在复平面内表示的点的坐标为A. B. C. D. 2. 命题“”否定是( )A. B. C. D. 3. 函数单调递增区间是( )A. B. C. D. 4. 德国数学家莱布尼兹于1674年得到了第一个关于π的级数展开式,该公式于明朝初年传入我国.我国数学家、天文学家明安图为提高我国的数学研究水平,从乾隆初年(1736年)开始,历时近30年,证明了包括这个公式在内的三个公式,同时求得了展开三角函数和反三角函数的6个新级数公式,著有《割圆密率捷法》一书,为我国用级数计算开创先河,如图所示的程序框图可以用莱布尼兹“关于的级数展开式计算 的近似值(其中P表示的近似值)”.若输入,输出的结果P可以表示为A B. C. D. 5. 我国古代典籍《周易》用“卦”推测自然和社会的变化,如图是一个八卦图,包含乾、坤、震、巽、坎、离、艮、兑八卦、分别象征着天、地、雷、风、水、火、山、泽八种自然现象.每一卦由三个爻组成,其中“▃”表示一个阳爻,“▃▃”表示一个阴爻).若从含有两个或两个以上阴爻的卦中任取两卦,这两卦中恰好含有两个阳爻的概率是( )A. B. C. D. 6. 已知:,那么命题的一个必要非充分条件是( )A. B. C. D. 7. 已知甲、乙两名同学在高三的6次数学测试成绩统计的折线图如下,下列说法正确的是( )A. 若甲、乙两组数据的方差分别为,,则B. 甲成绩比乙成绩更稳定C. 甲成绩的极差大于乙成绩的极差D. 若甲、乙两组数据的平均数分别为,,则8. 若f′(x0)=,则 等于( )A. -1 B. -2 C. 1 D. 29. 函数在区间的图像大致为( )A. B. C. D. 10. 已知是区间内任取的一个数,那么函数在上是增函数的概率是( )A. B. C. D. 11. 已知函数存在两个零点,则实数t的取值范围为( )A. B. C. D. 12. 已知是偶函数的导函数,.若时,,则使得不等式成立的x的取值范围是( )A. B. C D. 二、填空题(每题5分,总计20分)13. 已知,则_____.14. 为庆祝中国共产党第二十次代表大会胜利闭幕,某高中学校在学生中开展了“学精神,悟思想,谈收获”的二十大精神宣讲主题活动.为了解该校学生参加主题学习活动的具体情况,校团委利用分层抽样的方法从三个年级中抽取了260人进行问卷调查,其中高一、高二年级各抽取了85人.已知该校高三年级共有720名学生,则该校共有学生______人.15. 已知,对,且,恒有,则实数的取值范围是__________.16. 如图所示,在等腰直角三角形ABC中,∠C为直角,BC=2,EF∥BC,沿EF把面AEF折起,使面AEF⊥面EFBC,当四棱锥A-CBFE的体积最大时,EF的长为__.三、解答题(17题10分,其余各题12分,总计70分)17. 已知函数在处取得极大值.(1)求的值;(2)当时,求的最大值.18. 近几年,在缺“芯”困局之下,国产替代呼声愈发高涨,在国家的政策扶持下,国产芯片厂商呈爆发式增长.为估计某地芯片企业的营业收入,随机选取了10家芯片企业,统计了每家企业的研发投入(单位:亿)和营业收入(单位:亿),得到如下数据:样本号i12345678910研发投入224681014161820营业收入1416303850607090102130并计算得,,,,.(1)求该地芯片企业的研发投入与营业收入的样本相关系数r,并判断这两个变量的相关性强弱(若,则线性相关程度一般,若,则线性相关程度较高,r精确到0.01);(2)现统计了该地所有芯片企业的研发投入,并得到所有芯片企业的研发投入总和为268亿,已知芯片企业的研发投入与营业收入近似成正比.利用以上数据给出该地芯片企业的总营业收入的估计值.附:相关系数,.19. 某学校有学生人,为了解学生对本校食堂服务满意程度,随机抽取了名学生对本校食堂服务满意程度打分,根据这名学生的打分,绘制频率分布直方图(如图所示),其中样本数据分组区间为.(1)求频率分布直方图中的值,并估计该校学生满意度打分不低于分的人数;(2)若采用分层抽样的方法,从打分在的受访学生中随机抽取人了解情况,再从中选取人进行跟踪分析,求这人至少有一人评分在的概率.20. 如图,在直三棱柱中,,D为的中点,为上一点,且.(1)证明:∥平面;(2)若,,求点到平面的距离.21. 设函数.(1)若,求的单调区间;(2)若对任意,都有,求实数的取值范围.22. 已知函数.(1)讨论的单调性.(2)若存在两个零点,且曲线在和处的切线交于点.①求实数的取值范围;②证明:.
相关试卷
这是一份2023-2024学年四川省乐山市沙湾区沫若中学高二(上)开学数学试卷(含解析),共16页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。
这是一份四川省乐山市沫若中学2023-2024学年高二上学期开学考试数学试题,共15页。试卷主要包含了单项选择题,填空题,解答题等内容,欢迎下载使用。
这是一份四川省乐山市沫若中学2021-2022学年高二下学期第二次月考数学(文)试题,共18页。