![四川省仁寿县2020-2021学年高二下学期期末模拟考试 数学(理)试题01](http://www.enxinlong.com/img-preview/3/3/14435808/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![四川省仁寿县2020-2021学年高二下学期期末模拟考试 数学(理)试题02](http://www.enxinlong.com/img-preview/3/3/14435808/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![四川省仁寿县2020-2021学年高二下学期期末模拟考试 数学(理)试题03](http://www.enxinlong.com/img-preview/3/3/14435808/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
四川省仁寿县2020-2021学年高二下学期期末模拟考试 数学(理)试题
展开高2019级仁寿县第四学期期末模拟试卷
理科数学 2021.06
数学试题卷(理科)共4页.满分150分.考试时间120分钟.
注意事项:
1.答选择题时,必须使用2B铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其他答案标号.
2.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上.
3.所有题目必须在答题卡上作答,在试题卷上答题无效.
4.考试结束后,将答题卡交回.
一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个备选项中,只有一项是符合题目要求的.
1.已知i为虚数单位,复数,,若z为纯虚数,则( )
A. B. C.2 D.
2.某学校决定从该校的2000名高一学生中采用系统抽样(等距)的方法抽取50名学生进行体质分析,现将2000名学生从1至2000编号,已知样本中第一个编号为7,则抽取的第26个学生的编号为( )
A.997 B.1007 C.1047 D.1087
3.对两个变量进行回归分析,得到一组样本数据:,则下列说法中不正确的是( )
A.由样本数据得到的回归方程必过样本中心
B.残差平方和越小的模型,拟合的效果越好
C.用相关指数来刻画回归效果,越小,说明模型的拟合效果越好
D.若变量之间的相关系数为,则变量之间具有线性相关关系
4.甲、乙两名同学在高考前的5次模拟考中的数学成绩如茎叶图所示,记甲、 乙两人的平均成绩分别为,下列说法正确的是( )
A.,且乙比甲的成绩稳定 B.,且乙比甲的成绩稳定
C.,且甲比乙的成绩稳定 D.,且甲比乙的成绩稳定
5.2021年电影春节档票房再创新高,其中电影《唐人街探案3》和《你好,李焕英》是今年春节档电影中最火爆的两部电影,这两部电影都是2月12日(大年初一)首映,根据猫眼票房数据得到如下统计图,该图统计了从2月12日到2月18日共计7天的累计票房(单位:亿元),则下列说法中错误的是( )
A.这7天电影《你好,李焕英》每天的票房都超过2.5亿元
B.这7天两部电影的累计票房的差的绝对值先逐步扩大后逐步缩小
C.这7天电影《你好,李焕英》的当日票房占比逐渐增大
D.这7天中有4天电影《唐人街探案3》的当日票房占比超过50%
6.如图所示的程序框图,若输入x的值为2,输出v的值为16,则判断框内可以填入( )
A.k≤3? B.k≤4? C.k≥3? D.k≥4?
7.5人站成一排,若甲、乙彼此不相邻,则不同的排法种数共有( )
A. 72 B.144 C.12 D.36
8.苏格兰数学家科林麦克劳林(ColinMaclaurin)研究出了著名的Maclaurin级数展开式,受到了世界上顶尖数学家的广泛认可,下面是麦克劳林建立的其中一个公式:,试根据此公式估计下面代数式的近似值为( )(可能用到数值ln2.414=0.881,ln3.414=1.23)
A.3.23 B.2.881 C.1.881 D.1.23
9.函数(其中为自然对数的底数)的图象大致是( )
A. B. C. D.
10.已知的二项展开式中二项式系数之和为64,则下列结论正确的是( )
A.二项展开式中各项系数之和为 B.二项展开式中二项式系数最大的项为
C.二项展开式中无常数项 D.二项展开式中系数最大的项为
11.已知函数是函数的导函数,对任意,,则下列结论正确的是( )
A. B. C. D.
12.已知函数,,设为实数,若存在实数,使,则实数的取值范围为( )
A. B. C. D.
二、填空题:本大题共4小题,每小题5分,共20分. 请将答案填在答题卷中的相应位置.
13.曲线及围成的平面区域如图所示,向正方形中随机投入一个质点,则质点落在阴影部分区域的概率为__▲___
14.复数(是虚数单位)是方程的一个根,则实数___▲___
15.已知函数的定义域为,且的图像如右图所示,记的导函数为,则不等式的解集是____▲___
16.若函数图象在点处的切线方程
为,则的最小值为___▲___
三、解答题:本大题共6小题,共70分,解答应写出文字说明、证明过程或推演步骤.
17.(本小题10分)已知函数.
(1)求曲线在处的切线方程;
(2)求曲线过点的切线方程.
18.(本小题12分)
某企业有A,B两个分厂生产某种产品,规定该产品的某项质量指标值不低于120的为优质品.分别从A,B两厂中各随机抽取100件产品统计其质量指标值,得到如下频率分布直方图:
(1)根据频率分布直方图,分别求出B分厂的质量指标值的中位数和平均数的估计值;
(2)填写列联表,并根据列联表判断是否有99%的把握认为这两个分厂的产品质量有差异?
19.(本小题12分)某公司为了提高利润,从2012年至2018年每年对生产环节的改进进行投资,投资金额与年利润增长的数据如下表:
(1)请用最小二乘法求出关于的回归直线方程(结果保留两位小数);
(2)现从2012—2018年这7年中抽出三年进行调查,记年利润增长-投资金额,设这三年中(万元)的年份数为,求随机变量的分布列与期望.
参考公式:,.参考数据:,..
20.(本小题12分)已知函数.
(1)求函数的最值;
(2)求证:.
21.(本小题12分)某学校招聘在职教师,甲、乙两人同时应聘.应聘者需进行笔试和面试,笔试分为三个环节,每个环节都必须参与,甲笔试部分每个环节通过的概率均为,乙笔试部分每个环节通过的概率依次为,,,笔试三个环节至少通过两个才能够参加面试,否则直接淘汰;面试分为两个环节,每个环节都必须参与,甲面试部分每个环节通过的概率依次为,,乙面试部分每个环节通过的概率依次为,,若面试部分的两个环节都通过,则可以成为该学校的在职教师.甲、乙两人通过各个环节相互独立.
(1)求乙未能参与面试的概率;
(2)记甲本次应聘通过的环节数为,求的分布列以及数学期望;
(3)若该校仅招聘1名在职教师,试通过概率计算,判断甲、乙两人谁更有可能入职.
22.(本小题12分)已知函数为自然对数的底数)
(1)若是的极值点,求的取值;
(2)若只有一个零点,求的取值范围.
高2019级仁寿县第四学期期末模拟试卷
理科数学参考答案
一、选择题
1.C 2.B 3.C 4.A 5.D 6.A 7.A 8.B 9.C 10.D 11.C 12.B
二、填空题
13. 14. 15. 16.
三、解答题
17.解:(1)由已知得,则,所以切线斜率,···························1分
因为,所以切点坐标为,·····················································2分
所以所求直线方程为,
故曲线在处的切线方程为.·······················································3分
(2)由已知得,设切点为,···················································4分
则,即,得或,
所以切点为或,切线的斜率为或,·················································8分
所以切线方程为或
即切线方程为或····························································10分
18.解:(1)B分厂的质量指标值;
由,则的中位数为······································2分
的平均数为·········6分
(2)列联表:
···············································································7分
由列联表可知的观测值为:
··································11分
所以有99%的把握认为两个分厂的产品质量有差异.················································12分
19.解:(1),
,,········································5分
故关的回归直线方程为:····························································6分
(2)由表格可知,年这年中
年份 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 |
1.5 | 2 | 1.9 | 2.1 | 2.4 | 2.6 | 3.6 |
的可能取值为1,2,3················································································7分
,,······························10分
可得:·······························12分
20.解:(1)由题可知··································································1分
所以,当时,,单调递减;当时,,单调递增,所以··································································4分
(2)方法一:,··························································8分
易得,,
所以,得证······················································12分
方法二:,令,
,故在上单调递增.············································5分
又,又在上连续,
使得,即,.(*)·····························7分
随的变化情况如下:
↘ | 极小值 | ↗ |
. 由(*)式得,代入上式得
. 令,
,故在上单调递减.,又,.
即.·················································································12分
21.解:(1)若乙笔试部分三个环节一个都没有通过或只通过一个,则不能参与面试,故乙未能参与面试的概率.·······························3分
(2)的可能取值为0,1,2,3,4,5,
,,,
,
,
.··················································································7分
则的分布列为:
0 | 1 | 2 | 3 | 4 | 5 | |
故.···········································9分
(3)由(2)可知,甲成为在职教师的概率,
乙成为在职教师的概率.
因为,所以甲更可能成为该校的在职教师··················································12分
22.解:(1),······································································1分
当时,,;,,此时恒成立,则不是函数的极值点······························································································3分
所以···················································································4分
(2)只有一个零点,显然是,所以分为两种情况
第1种情况:满足,此时·····················································6分
第2种情况:无解,令,;
①当时,,单调递增,故在上存在使得;·························································································8分
②当时,方程显然无解;·······························································9分
③当时,解得,当时,,单调递减;当时,,单调递增,则,即,所以·································································································11分
综上所述:················································································12分
2022-2023学年四川省仁寿县校际联考高二下学期第一次质量检测数学(理)试题含答案: 这是一份2022-2023学年四川省仁寿县校际联考高二下学期第一次质量检测数学(理)试题含答案,共16页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
2022-2023学年四川省仁寿县文宫中学高二下学期5月期中数学(理)试题含答案: 这是一份2022-2023学年四川省仁寿县文宫中学高二下学期5月期中数学(理)试题含答案,共16页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
四川省仁寿县2020-2021学年高二下学期期末模拟考试 数学(文)试题: 这是一份四川省仁寿县2020-2021学年高二下学期期末模拟考试 数学(文)试题,共10页。试卷主要包含了06,5亿元等内容,欢迎下载使用。