|试卷下载
终身会员
搜索
    上传资料 赚现金
    2023年新疆生产建设兵团中考数学试卷(含解析)
    立即下载
    加入资料篮
    2023年新疆生产建设兵团中考数学试卷(含解析)01
    2023年新疆生产建设兵团中考数学试卷(含解析)02
    2023年新疆生产建设兵团中考数学试卷(含解析)03
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2023年新疆生产建设兵团中考数学试卷(含解析)

    展开
    这是一份2023年新疆生产建设兵团中考数学试卷(含解析),共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023年新疆生产建设兵团中考数学试卷

    一、选择题(本大题共9小题,共36.0分。在每小题列出的选项中,选出符合题目的一项)

    1.  的绝对值是(    )

    A.  B.  C.  D.

    2.  下列交通标志中是轴对称图形的是(    )

    A.  B.  C.  D.

    3.  我国自主研制的全球最大集装箱船“地中海泰莎”号的甲板面积近似于个标准足球场,可承载吨的货物数字用科学记数法可表示为(    )

    A.  B.  C.  D.

    4.  一次函数的图象不经过(    )

    A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限

    5.  计算的结果是(    )

    A.  B.  C.  D.

    6.  用配方法解一元二次方程配方后得到的方程是(    )

    A.  B.  C.  D.

    7.  如图,在中,若,则扇形阴影部分的面积是(    )

    A.
    B.
    C.
    D.

    8.  如图,在中,以点为圆心,适当长为半径作弧,交于点,交于点,分别以点为圆心,大于长为半径作弧,两弧在的内部交于点,作射线于点,则的长为(    )


     

    A.  B.  C.  D.

    9.  如图,在平面直角坐标系中,直线与抛物线相交于点结合图象,判断下列结论:时,是方程的一个解;是抛物线上的两点,则对于抛物线,当时,的取值范围是其中正确结论的个数是(    )

    A.  B.  C.  D.

    二、填空题(本大题共6小题,共24.0分)

    10.  要使分式有意义,则需满足的条件是______

    11.  若一个正多边形的每个内角为,则这个正多边形的边数是______

    12.  在平面直角坐标系中有五个点,分别是,从中任选一个点恰好在第一象限的概率是______

    13.  如图,在中,若,则 ______


     

    14.  如图,在平面直角坐标系中,为直角三角形,若反比例函数的图象经过的中点,交于点,则 ______


     

    15.  如图,在中,,点上一动点,将沿折叠得到,当点恰好落在上时,的长为______

    三、解答题(本大题共8小题,共90.0分。解答应写出文字说明,证明过程或演算步骤)

    16.  本小题
    计算:

    17.  本小题
    解不等式组
    金秋时节,新疆瓜果飘香,某水果店种水果每千克元,种水果每千克元,小明买了两种水果共千克,花了两种水果各买了多少千克?

    18.  本小题
    如图,相交于点,点分别是的中点.
    求证:
    时,求证:四边形是矩形.


    19.  本小题
    跳绳是某校体育活动的特色项目体育组为了了解七年级学生分钟跳绳次数情况,随机抽取名七年级学生进行分钟跳绳测试单位:次,数据如下:


    对这组数据进行整理和分析,结果如下:

    平均数

    众数

    中位数

    请根据以上信息解答下列问题:
    填空: ______ ______
    学校规定分钟跳绳次及以上为优秀,请你估计七年级名学生中,约有多少名学生能达到优秀?
    某同学分钟跳绳次,请推测该同学的分钟跳绳次数是否超过年级一半的学生?说明理由.

    20.  本小题
    烽燧即烽火台,是古代军情报警的一种措施,史册记载,夜间举火称“烽”,白天放烟称“燧”克孜尔尕哈烽燧是古丝绸之路北道上新疆境内时代最早、保存最完好、规模最大的古代烽燧如图某数学兴趣小组利用无人机测量该烽燧的高度,如图,无人机飞至距地面高度米的处,测得烽燧的顶部处的俯角为,测得烽燧的底部处的俯角为,试根据提供的数据计算烽燧的高度.
    参考数据:

     

    21.  本小题
    随着端午节的临近,两家超市开展促销活动,各自推出不同的购物优惠方案,如下表:

     

    超市

    超市

    优惠方案

    所有商品按八折出售

    购物金额每满元返

    当购物金额为元时,选择______ 超市填“”或“更省钱;
    当购物金额为元时,选择______ 超市填“”或“更省钱;
    若购物金额为元时,请分别写出它们的实付金额与购物金额之间的函数解析式,并说明促销期间如何选择这两家超市去购物更省钱?
    对于超市的优惠方案,随着购物金额的增大,顾客享受的优惠率不变,均为注:优惠率若在超市购物,购物金额越大,享受的优惠率一定越大吗?请举例说明.

    22.  本小题
    如图,的直径,点上的点,且,连接,过点的垂线,交的延长线于点,交的延长线于点,过点于点,交于点
    求证:的切线;
    ,求的长.


    23.  本小题
    【建立模型】如图,点是线段上的一点,,垂足分别为求证:
    【类比迁移】如图,一次函数的图象与轴交于点、与轴交于点,将线段绕点逆时针旋转得到,直线轴于点
    求点的坐标;
    求直线的解析式;
    【拓展延伸】如图,抛物线轴交于两点在点的左侧,与轴交于点,已知点,连接,抛物线上是否存在点,使得,若存在,求出点的横坐标.


    答案和解析

     

    1.【答案】 

    【解析】解:的绝对值是
    故选:
    负数的绝对值是它的相反数,由此即可得到答案.
    本题考查绝对值的概念,关键是掌握绝对值的意义.
     

    2.【答案】 

    【解析】解:原图不是轴对称图形,故此选项不合题意;
    B.原图是轴对称图形,故此选项符合题意;
    C.原图不是轴对称图形,故此选项不合题意;
    D.原图不是轴对称图形,故此选项不合题意.
    故选:
    根据轴对称图形的意义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴,据此判断即可.
    此题主要考查了轴对称图形,判断是不是轴对称图形的关键是找出对称轴,看图形沿对称轴对折后两部分能否完全重合.
     

    3.【答案】 

    【解析】解:
    故选:
    将一个数表示为的形式,其中为整数,这种记数方法叫做科学记数法,据此即可得出答案.
    本题考查科学记数法表示较大的数,科学记数法是基础且重要知识点,必须熟练掌握.
     

    4.【答案】 

    【解析】解:在一次函数中,
    一次函数经过第一、二、三象限,不经过第四象限.
    故选:
    利用一次函数的性质即可判断.
    本题考查了一次函数的性质,熟练掌握一次函数的性质与系数的关系是解题的关键.
     

    5.【答案】 

    【解析】解:
    故选:
    直接利用单项式乘单项式以及整式的除法运算法则计算,即可得出答案.
    此题主要考查了整式的除法运算以及单项式乘单项式,正确掌握相关运算法则是解题关键.
     

    6.【答案】 

    【解析】解:



    故选:
    利用解一元二次方程配方法,进行计算即可解答.
    本题考查了解一元二次方程配方法,熟练掌握解一元二次方程配方法是解题的关键.
     

    7.【答案】 

    【解析】解:


    故选:
    先由圆周角定理可得的度数,然后再根据扇形的面积公式计算可得结果.
    此题主要是考查了圆周角定理,扇形的面积公式,能够熟练运用同弧所对圆周角是圆心角的一半是解答此题的关键.
     

    8.【答案】 

    【解析】解:


    平分

    中,







    故选:
    根据勾股定理得到,过,根据角平分线的性质得到,根据全等三角形的性质得到,求得,根据勾股定理即可得到结论.
    本题考查了作图基本作图,全等三角形的判定和性质,勾股定理,角平分线的性质,正确地作出辅助线是解题的关键.
     

    9.【答案】 

    【解析】解:直线与抛物线相交于点
    由图象可知:当时,直线在抛物线的上方,

    正确.
    由图象可知:抛物线有两个交点,
    方程有两个不相等的实数根.
    是方程的一个解,
    正确.
    将点代入得:
    解得:
    抛物线解析式为
    时,
    时,

    正确.
    可知与点关于对称轴对称,
    对称轴
    代入抛物线解析式得
    时,
    时,
    错误.
    故选:
    根据函数的图象特征即可得出结论.
    根据二次函数与二次方程根的关系即可得出结论.
    将点代入得出解析式,再求出的值即可得出结论.
    由图象和可得出二次函数的对称轴,再根据二次函数的增减性以及二次函数图象即得出得取值范围.
    本题考查了二次函数的图象特征、二次函数与方程、不等式之间的关系,利用数形结合的思想是解决此类问题的关键.
     

    10.【答案】 

    【解析】解:由题意得:
    解得:
    故答案为:
    根据分母不为可得:,然后进行计算即可解答.
    本题考查了分式有意义的条件,熟练掌握分母不为是解题的关键.
     

    11.【答案】 

    【解析】解:设正多边形是边形,由内角和公式得:

    解得
    故答案为:
    根据多边形的内角和公式,可得答案.
    本题考查了多边形内角与外角,由内角和得出方程式解题关键.
     

    12.【答案】 

    【解析】解:从中任选一个点共有种等可能的结果,在第一象限的点有两个,
    从中任选一个点恰好在第一象限的概率是:
    故答案为:
    利用概率公式求解即可求得答案.
    此题考查了概率公式和点的坐标.用到的知识点为:概率所求情况数与总情况数之比.
     

    13.【答案】 

    【解析】解:




    故答案为:
    由等腰三角形的性质可知,利用三角形内角和定理得出,解得
    本题考查了等腰三角形的性质,三角形内角和定理,熟练掌握等腰三角形的性质是解题的关键.
     

    14.【答案】 

    【解析】解:过点于点,过点于点


    由勾股定理得
    中,

    由勾股定理得
    的中点,

    在第一象限,
    的坐标是
    反比例函数的图象经过的中点

    故答案为:
    先根据直角三角形中的角所对的直角边是斜边的一半求出,再根据勾股定理求出,在中求出,最后根据点的中点求出点的坐标,利用待定系数法求出的值即可.
    本题考查了反比例函数与几何的综合题,熟知直角三角形中的角所对的直角边是斜边的一半,熟练掌握勾股定理,求出点的坐标是此题的关键.
     

    15.【答案】 

    【解析】解:当点恰好落在上时,如图,过点于点,过点于点

    四边形为平行四边形,



    中,
    根据折叠的性质可得,


    ,即
    为等腰直角三角形,




    ,即



    中,

    整理得:
    解得:舍去


    故答案为:
    过点于点,过点于点,由题意易得,在中,,由折叠可知,由平行线的性质可得,进而得到,于是为等腰直角三角形,,易证,由相似三角形的性质得到,设,则,在中,利用勾股定理建立方程,求解即可.
    本题主要考查平行四边形的性质、解直角三角形、折叠的性质、等腰三角形的判定与性质、相似三角形的判定与性质、勾股定理,解题关键是根据题意正确画出图形,再添加合适的辅助线,构造直角三角形和相似三角形解决问题.
     

    16.【答案】解:




     

    【解析】先计算负整数指数幂、二次根式、零指数幂;然后计算加减法;
    利用平方差公式和单项式乘多项式计算法则去括号,然后合并同类项.
    本题主要考查了平方差公式、二次根式、实数的运算以及零指数幂,运用平方差公式计算时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.
     

    17.【答案】解:解不等式得:
    解不等式得:
    则不等式组的解集为
    设该水果店购进种水果千克,种水果千克,
    依题意得:
    解得:
    答:该水果店购进种水果千克,种水果千克. 

    【解析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集;
    设该水果店购进种水果千克,种水果千克,根据“该水果店购进两种水果共千克,且共花费元”,即可得出关于的二元一次方程组,解之即可得出结论.
    本题考查了解一元一次不等式组和二元一次方程组的应用,熟练掌握不等式组的解法和找准等量关系,正确列出二元一次方程组是解题的关键.
     

    18.【答案】证明:


    中,



    分别是的中点,



    四边形是平行四边形,





    四边形是矩形. 

    【解析】根据平行线的判定定理得到,根据平行线的性质得到,根据全等三角形的性质得到,根据线段中点的定义得到
    根据平行四边形的判定定理得到四边形是平行四边形,求得,根据矩形的判定定理得到四边形是矩形.
    本题考查了矩形的判定,全等三角形的判定和性质,平行四边形的判定和性质,直角三角形的性质,熟练掌握矩形的判定定理是解题的关键.
     

    19.【答案】   

    【解析】解:在被抽取名七年级学生进行分钟跳绳测试成绩中,出现的次数最多,故众数
    把被抽取名七年级学生进行分钟跳绳测试成绩从小到大排列,排在中间的两个数分别是,故中位数
    故答案为:

    答:估计七年级名学生中,约有名学生能达到优秀;
    超过年级一半的学生,理由如下:

    推测该同学的分钟跳绳次数超过年级一半的学生.
    根据众数和中位数的定义解答即可;
    用总人数乘样本中分钟跳绳次及以上所占比例即可;
    根据中位数的意义解答即可.
    本题考查众数、中位数以及用样本估计总体等知识,解题的关键是熟练掌握基本概念.
     

    20.【答案】解:过点的延长线于点,则米,

    中,米,

    中,


    答:烽燧的高度约为米. 

    【解析】过点的延长线于点,则米,在中可求出,在中可求出,再利用即可得到答案.
    本题考查解直角三角形的应用仰角俯角,构造直角三角形,合理利用三角函数关系是解题的关键.
     

    21.【答案】   

    【解析】解:
    超市八折优惠,超市不优惠,
    选择超市更省钱;

    超市应付:元,超市应付:元,

    选择超市更省钱;
    故答案为:
    时,超市八折优惠,超市不优惠,
    选择超市更省钱,
    时,超市函数表达式为:超市函数表达式为:
    ,即时,选择超市更省钱;
    ,即时,两超市花费一样多;
    ,即时,选择超市更省钱.
    不一定,例:
    时,设优惠率为,则有
    时,设优惠率为,则有


    时,,即购物金额小时,享受的优惠率大,
    超市购物,购物金额越大,享受的优惠率不一定越大.
    根据两超市的优惠方案分别计算即可;
    两种情况分别计算;
    时,设优惠率为,则有,当时,设优惠率为,则有,然后计算分析即可.
    本题主要考查的是一次函数的应用,能够根据两超市的优惠方案正确列出式子是解决本题的关键.
     

    22.【答案】证明:连接于点,则



    垂直平分
    的直径,的延长线于点



    的半径,经过点
    的切线.
    解:作于点,则

    四边形是矩形,













    于点






    的长是 

    【解析】连接于点,可证明,则,所以垂直平分,由,得,则,即可证明的切线;
    于点,则四边形是矩形,由,得,由,得,则,于是得,则,由勾股定理得,而,则,再证明,得,所以
    此题重点考查切线的判定、圆周角定理、垂径定理、勾股定理、相似三角形的判定与性质、锐角三角函数与解直角三角形等知识,正确地作出所需要的辅助线是解题的关键.
     

    23.【答案】证明:



    中,


    解:一次函数的图象与轴交于点、与轴交于点


    过点轴于点,如图,



    线段绕点逆时针旋转得到







    设直线的解析式为,则
    解得:
    直线的解析式为
    解:抛物线上存在点,使得
    抛物线轴交于两点在点的左侧,与轴交于点,
    时,
    解得:

    时,

    当点轴上方时,如图,设轴于点,过点于点





    中,




    ,即






    解得:

    设直线的解析式为,则
    解得:
    直线的解析式为
    联立得
    解得:舍去

    当点轴下方时,如图,过点,交于点,过点轴于点








    ,即



    设直线的解析式为,则
    解得:
    直线的解析式为
    联立,得
    解得:舍去

    综上所述,抛物线上存在点,使得,点的横坐标为 

    【解析】根据垂直定义可得,利用同角的余角相等可得,再利用即可证明
    先求得,过点轴于点,则,进而证得,得出,即可求得点的坐标;
    运用待定系数法即可求得直线的解析式;
    先求得,分两种情况:当点轴上方时,当点轴下方时,分别构造直角三角形,利用相似三角形的判定和性质即可求得直线上特殊点的坐标,运用待定系数法求得直线的解析式,联立方程组求解即可得出点的坐标.
    本题是二次函数综合题,考查了待定系数法,勾股定理,直角三角形性质,全等三角形的判定和性质,相似三角形的判定和性质,旋转变换的性质,二次函数的图象及性质,熟练掌握三角形相似的判定及性质,直角三角形的性质,直角三角形的三角函数值,运用分类讨论思想和数形结合思想是解题的关键.
     

    相关试卷

    2022年新疆生产建设兵团中考数学试卷: 这是一份2022年新疆生产建设兵团中考数学试卷,共22页。试卷主要包含了单项选择题,填空题,解答题等内容,欢迎下载使用。

    2023年新疆生产建设兵团中考数学试卷(含答案解析): 这是一份2023年新疆生产建设兵团中考数学试卷(含答案解析),共29页。试卷主要包含了单项选择题,填空题,解答题等内容,欢迎下载使用。

    2023年新疆生产建设兵团中考数学试卷(含解析 ): 这是一份2023年新疆生产建设兵团中考数学试卷(含解析 ),共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map