|试卷下载
终身会员
搜索
    上传资料 赚现金
    专题07 立体几何的向量方法- 2022届高考数学二模试题分类汇编(新高考卷)(原卷版)
    立即下载
    加入资料篮
    专题07 立体几何的向量方法- 2022届高考数学二模试题分类汇编(新高考卷)(原卷版)01
    专题07 立体几何的向量方法- 2022届高考数学二模试题分类汇编(新高考卷)(原卷版)02
    专题07 立体几何的向量方法- 2022届高考数学二模试题分类汇编(新高考卷)(原卷版)03
    还剩6页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    专题07 立体几何的向量方法- 2022届高考数学二模试题分类汇编(新高考卷)(原卷版)

    展开
    这是一份专题07 立体几何的向量方法- 2022届高考数学二模试题分类汇编(新高考卷)(原卷版),共9页。

    《专题7 立体几何的向量方法- 2022届高考数学二模试题分类汇编(新高考卷)》

    1【利用空间向量判定位置关系】2022·陕西宝鸡·一模)如图,四棱锥的底面为正方形,平面的中点,

    (1)求证:平面

    (2)设直线与平面交于,求证:

    2【利用空间向量判定位置关系】2022·江苏·模拟)如图,在正三棱柱(侧棱垂直于底面,且底面三角形是等边三角形)中,分别是的中点.

    (1)求证:平面平面

    (2)在线段上是否存在一点使平面?若存在,确定点的位置;若不存在,也请说明理由.

    3【利用空间向量求线面角】2022·江苏南通·模拟预测)如图所示的几何体中,平面ABC平面ABC,点M在棱AB上,且

    (1)求证:平面平面ABDE

    (2)求直线CD与平面MCE所成角的正弦值.

    4【利用空间向量求线面角】2022·浙江嘉兴·二模)如图,在四棱锥中,底面是等腰梯形,,且.

    (1)证明:

    (2)E中点,求直线与平面所成角的正弦值.

    5【利用空间向量求二面角】2022·广东茂名·二模)如图所示的圆柱中,AB是圆O的直径,为圆柱的母线,四边形ABCD是底面圆O的内接等腰梯形,且EF分别为的中点.

    (1)证明:ABCD

    (2)求平面与平面所成锐二面角的余弦值.

    6【利用空间向量求二面角】2022·内蒙古赤峰·模拟预测)已知四棱锥中,底面为正方形,平面分别为的中点.

    (1)求证:

    (2)求二面角的余弦值.

    7【利用空间向量求距离】2022·天津市新华中学模拟预测)在如图所示的几何体中,四边形是正方形,四边形是梯形,,平面平面,且.

    (1)求证:平面

    (2)求平面与平面所成角的大小;

    (3)已知点在棱上,且异面直线所成角的余弦值为,求点到平面的距离.

    8【利用空间向量求距离】2022·北京·一模)如图,在三棱柱中,平面为线段上一点.

    (1)求证:

    (2)若直线与平面所成角为,求点到平面的距离.

    9【空间立体几何中的结构不良问题】2022·四川泸州·三模)已知直三棱柱中,D的中点.

    (1)从下面①②③中选取两个作为条件,证明另外一个成立;

    (2),求直线与平面ABD所成角的正弦值.

    10【空间立体几何中的结构不良问题】2022·山东青岛·一模)如图,在梯形中,的中点,以为折痕把折起,连接,得到如图的几何体,在图的几何体中解答下列两个问题.

    (1)证明:

    (2)请从以下两个条件中选择一个作为已知条件,求二面角的余弦值.

    四棱锥的体积为2

    直线所成角的余弦值为

    注:如果选择两个条件分别解答,按第一个解答计分.

    11【空间立体几何中的折叠问题】2022·重庆·模拟预测)在直角梯形ABCD中,EF分别为ADBC的中点,沿EF将四边形EFCD折起,使得(如图2).

    (1)求证:平面平面EFCD

    (2)若直线AC与平面ABFE所成角的正切值为,求二面角的余弦值.

    12【空间立体几何中的折叠问题】2022·黑龙江·哈尔滨三中二模)如图1,矩形ABCD,点EF分别是线段ABCD的中点,,将矩形ABCD沿EF翻折.

    (1)若所成二面角的大小为(如图2),求证:直线DBF

    (2)若所成二面角的大小为(如图3),点M在线段AD上,当直线BE与面EMC所成角为时,求二面角的余弦值.

    .

    13【空间立体几何中的探索性问题】2022·广西桂林·二模(理))如图,在四棱锥P-ABCD中,底面ABCD为正方形,PA底面ABCDE为线段PB的中点,F为线段BC上的动点.

    (1)求证:平面AEF平面PBC

    (2)试确定点F的位置,使平面AEF与平面PCD所成的锐二面角为30°.

    14【空间立体几何中的探索问题】2022·江苏连云港·二模)如图,在三棱锥中,是正三角形,平面平面,点分别是的中点.

    (1)证明:平面平面

    (2),点是线段上的动点,问:点运动到何处时,平面与平面所成的锐二面角最小.

    15【空间立体几何中的探索问题】2022·陕西·模拟预测(理))如图,正方体的棱长为2EF分别为的中点,P为棱上的动点.

    (1)是否存在点P使平面?若存在,求出满足条件时的长度并证明;若不存在,请说明理由;

    (2)为何值时,平面与平面所成锐二面角的正弦值最小.

    16【空间立体几何中的探索问题】2022·重庆·西南大学附中模拟预测)如图,在三棱柱中,DAC中点,

    (1)求证:

    (2)线段上是否存在一点E,使得AE与面的夹角的正弦值为?若存在,求出E点的位置;若不存在,请说明理由.


     

    相关试卷

    专题07 立体几何的向量方法- 2022届高考数学二模试题分类汇编(新高考卷)(解析版): 这是一份专题07 立体几何的向量方法- 2022届高考数学二模试题分类汇编(新高考卷)(解析版),共29页。

    专题06 空间位置关系的判断与证明- 2022届高考数学二模试题分类汇编(新高考卷)(原卷版): 这是一份专题06 空间位置关系的判断与证明- 2022届高考数学二模试题分类汇编(新高考卷)(原卷版),共8页。

    专题13 函数的图象和性质- 2022届高考数学二模试题分类汇编(新高考卷)(原卷版): 这是一份专题13 函数的图象和性质- 2022届高考数学二模试题分类汇编(新高考卷)(原卷版),共5页。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map