终身会员
搜索
    上传资料 赚现金
    2023年高考全国甲卷数学(理)真题(解析版)
    立即下载
    加入资料篮
    2023年高考全国甲卷数学(理)真题(解析版)01
    2023年高考全国甲卷数学(理)真题(解析版)02
    2023年高考全国甲卷数学(理)真题(解析版)03
    还剩21页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2023年高考全国甲卷数学(理)真题(解析版)

    展开
    这是一份2023年高考全国甲卷数学(理)真题(解析版),共24页。试卷主要包含了选择题,填空题,解答题,选做题等内容,欢迎下载使用。

    2023年普通高等学校招生全国统一考试(全国甲卷)

    理科数学

    一、选择题

    1. 设全集,集合   

    A.  B.

    C.  D.

    【答案】A

    【解析】

    【分析】根据整数集的分类,以及补集的运算即可解出.

    【详解】因为整数集,所以,

    故选:A

    2. ,则   

    A. -1 B. 0          · C. 1 D. 2

    【答案】C

    【解析】

    【分析】根据复数的代数运算以及复数相等即可解出.

    【详解】因为

    所以,解得:

    故选:C.

    3. 执行下面的程序框图,输出的   

       

    A. 21 B. 34 C. 55 D. 89

    【答案】B

    【解析】

    【分析】根据程序框图模拟运行,即可解出.

    【详解】时,判断框条件满足,第一次执行循环体,

    时,判断框条件满足,第二次执行循环体,

    时,判断框条件满足,第三次执行循环体,

    时,判断框条件不满足,跳出循环体,输出

    故选:B.

    4. 已知向量满足,且,则   

    A.  B.  C.  D.

    【答案】D

    【解析】

    【分析】作出图形,根据几何意义求解.

    【详解】因为,所以,

    ,,所以.

    如图,,

    由题知,是等腰直角三角形,

    AB边上的高,

    所以,

    ,

    .

    故选:D.

    5. 设等比数列的各项均为正数,前n项和,若,则   

    A.  B.  C. 15 D. 40

    【答案】C

    【解析】

    【分析】根据题意列出关于的方程,计算出,即可求出.

    【详解】由题知,

    ,,.

    由题知,所以.

    所以.

    故选:C.

    6. 某地的中学生中有的同学爱好滑冰,的同学爱好滑雪,的同学爱好滑冰或爱好滑雪.在该地的中学生中随机调查一位同学,若该同学爱好滑雪,则该同学也爱好滑冰的概率为(   

    A. 0.8 B. 0.6 C. 0.5 D. 0.4

    【答案】A

    【解析】

    【分析】先算出同时爱好两项的概率,利用条件概率的知识求解.

    【详解】同时爱好两项的概率为

    记“该同学爱好滑雪”为事件,记“该同学爱好滑冰”为事件

    所以.

    故选:.

    7. 设甲:,乙:,则(   

    A. 甲是乙的充分条件但不是必要条件 B. 甲是乙的必要条件但不是充分条件

    C. 甲是乙的充要条件 D. 甲既不是乙的充分条件也不是乙的必要条件

    【答案】B

    【解析】

    【分析】根据充分条件、必要条件的概念及同角三角函数的基本关系得解.

    【详解】时,例如

    推不出

    时,

    能推出.

    综上可知,甲是乙的必要不充分条件.

    故选:B

    8. 已知双曲线的离心率为C的一条渐近线与圆交于AB两点,则   

    A.  B.  C.  D.

    【答案】D

    【解析】

    【分析】根据离心率得出双曲线渐近线方程,再由圆心到直线的距离及圆半径可求弦长.

    【详解】,则

    解得

    所以双曲线的一条渐近线不妨取

    则圆心到渐近线的距离

    所以弦长.

    故选:D

    9. 现有5名志愿者报名参加公益活动,在某一星期的星期六、星期日两天,每天从这5人中安排2人参加公益活动,则恰有1人在这两天都参加的不同安排方式共有(   

    A. 120 B. 60 C. 30 D. 20

    【答案】B

    【解析】

    【分析】利用分类加法原理,分类讨论五名志愿者连续参加两天公益活动的情况,即可得解.

    【详解】不妨记五名志愿者为

    假设连续参加了两天公益活动,再从剩余的4人抽取2人各参加星期六与星期天的公益活动,共有种方法,

    同理:连续参加了两天公益活动,也各有种方法,

    所以恰有1人连续参加了两天公益活动的选择种数有.

    故选:B.

    10. 函数图象由函数的图象向左平移个单位长度得到,则的图象与直线的交点个数为(   

    A. 1 B. 2 C. 3 D. 4

    【答案】C

    【解析】

    【分析】先利用三角函数平移的性质求得,再作出的部分大致图像,考虑特殊点处的大小关系,从而精确图像,由此得解.

    【详解】因为向左平移个单位所得函数为,所以

    显然过两点,

    作出的部分大致图像如下,

     

    考虑,即的大小关系,

    时,

    时,

    时,

    所以由图可知,的交点个数为.

    故选:C.

    11. 已知四棱锥的底面是边长为4的正方形,,则的面积为(   

    A.  B.  C.  D.

    【答案】C

    【解析】

    【分析】法一:利用全等三角形的证明方法依次证得,从而得到,再在中利用余弦定理求得,从而求得,由此在中利用余弦定理与三角形面积公式即可得解;

    法二:先在中利用余弦定理求得,从而求得,再利用空间向量的数量积运算与余弦定理得到关于的方程组,从而求得,由此在中利用余弦定理与三角形面积公式即可得解.

    【详解】法一:

    连结交于,连结,则的中点,如图,

    因为底面为正方形,,所以,则

    ,所以,则

    ,所以,则

    中,

    则由余弦定理可得

    ,则

    故在中,

    所以

    ,所以

    所以的面积为.

    法二:

    连结交于,连结,则的中点,如图,

    因为底面为正方形,,所以

    中,

    则由余弦定理可得,故

    所以,则

    不妨记

    因为,所以

    ,整理得①,

    又在中,,即,则②,

    两式相加得,故

    故在中,

    所以

    ,所以

    所以的面积为.

    故选:C.

    12. O为坐标原点,为椭圆的两个焦点,点 PC上,,则   

    A.  B.  C.  D.

    【答案】B

    【解析】

    【分析】方法一:根据焦点三角形面积公式求出的面积,即可得到点的坐标,从而得出的值;

    方法二:利用椭圆的定义以及余弦定理求出,再结合中线的向量公式以及数量积即可求出;

    方法三:利用椭圆的定义以及余弦定理求出,即可根据中线定理求出.

    【详解】方法一:设,所以

    ,解得:

    由椭圆方程可知,

    所以,,解得:

    ,因此

    故选:B

    方法二:因为①,

    ②,联立①②,

    解得:

    ,所以

    故选:B

    方法三:因为①,

    ②,联立①②,解得:

    由中线定理可知,,易知,解得:

    故选:B

    【点睛】本题根据求解的目标可以选择利用椭圆中的二级结论焦点三角形的面积公式快速解出,也可以常规利用定义结合余弦定理,以及向量的数量积解决中线问题的方式解决,还可以直接用中线定理解决,难度不是很大.

    二、填空题

    13. 为偶函数,则________

    【答案】2

    【解析】

    【分析】利用偶函数的性质得到,从而求得,再检验即可得解.

    【详解】因为为偶函数,定义域为

    所以,即

    ,故

    此时

    所以

    又定义域为,故为偶函数,

    所以.

    故答案为:2.

    14. xy满足约束条件,设的最大值为____________

    【答案】15

    【解析】

    【分析】由约束条件作出可行域,根据线性规划求最值即可.

    【详解】作出可行域,如图,

     

    由图可知,当目标函数过点时,有最大值,

    可得,即,

    所以.

    故答案15

    15. 在正方体中,EF分别为AB的中点,以EF为直径的球的球面与该正方体的棱共有____________个公共点.

    【答案】12

    【解析】

    【分析】根据正方体的对称性,可知球心到各棱距离相等,故可得解.

    【详解】不妨设正方体棱长为2中点为,取中点,侧面的中心为,连接,如图,

     

    由题意可知,为球心,在正方体中,

    则球心的距离为

    所以球与棱相切,球面与棱只有1个交点,

    同理,根据正方体的对称性知,其余各棱和球面也只有1个交点,

    所以以EF为直径的球面与正方体每条棱的交点总数为12.

    故答案为:12

    16. 中,的角平分线交BCD,则_________

    【答案】

    【解析】

    【分析】方法一:利用余弦定理求出,再根据等面积法求出

    方法二:利用余弦定理求出,再根据正弦定理求出,即可根据三角形的特征求出.

    【详解】

    如图所示:记

    方法一:由余弦定理可得,

    因为,解得:

    可得,

    解得:

    故答案为:

    方法二:由余弦定理可得,,因为,解得:

    由正弦定理可得,,解得:

    因为,所以

    ,所以,即

    故答案为:

    【点睛】本题压轴相对比较简单,既可以利用三角形的面积公式解决角平分线问题,也可以用角平分定义结合正弦定理、余弦定理求解,知识技能考查常规.

    三、解答题

    17. 为数列n项和,已知

    1的通项公式;

    2求数列的前n项和

    【答案】1   

    2

    【解析】

    【分析】(1)根据即可求出;

    2)根据错位相减法即可解出.

    【小问1详解】

    因为

    时,,即

    时,,即

    时,,所以

    化简得:,当时,,即

    时都满足上式,所以

    【小问2详解】

    因为,所以

    两式相减得,

    ,即

    18. 如图,在三棱柱中,底面ABC到平面的距离为1

     

    1证明:

    2已知距离为2,求与平面所成角的正弦值.

    【答案】1证明见解析   

    2

    【解析】

    【分析】1)根据线面垂直,面面垂直的判定与性质定理可得平面,再由勾股定理求出为中点,即可得证;

    2)利用直角三角形求出的长及点到面的距离,根据线面角定义直接可得正弦值.

    【小问1详解】

    如图,

     

    底面

    ,又平面,

    平面ACC1A1,又平面

    平面平面

     ,又平面平面平面

    平面

    到平面的距离为1

    中,

    ,则

    为直角三角形,且

    ,解得

    【小问2详解】

    B,交D,则中点,

    由直线距离为2,所以

    延长,使,连接

    知四边形为平行四边形,

    平面,又平面

    则在中,

    中,

    到平面距离也为1

    所以与平面所成角的正弦值为.

    19. 一项试验旨在研究臭氧效应.实验方案如下:选40只小白鼠,随机地将其中20只分配到实验组,另外20只分配到对照组,实验组的小白鼠饲养在高浓度臭氧环境,对照组的小白鼠饲养在正常环境,一段时间后统计每只小白鼠体重的增加量(单位:g.

    1表示指定的两只小白鼠中分配到对照组的只数,求的分布列和数学期望;

    2实验结果如下:

    对照组的小白鼠体重的增加量从小到大排序为:

    15.2  18.8  20.2  21.3  22.5  23.2  25.8  26.5  27.5  30.1

    32.6  34.3  34.8  35.6  35.6  35.8  36.2  37.3  40.5  43.2

    对照组的小白鼠体重的增加量从小到大排序为:

    7.8   9.2   11.4    12.4  13.2   15.5   16.5  18.0  18.8  19.2

    19.8  20.2  21.6  22.8  23.6  23.9  25.1  28.2  32.3  36.5

    i)求40只小鼠体重的增加量的中位数m,再分别统计两样本中小于m与不小于的数据的个数,完成如下列联表:

     

    对照组

     

     

    实验组

     

     

    ii)根据(i)中的列联表,能否有95%的把握认为小白鼠在高浓度臭氧环境中与正常环境中体重的增加量有差异.

    附:

    0.100

    0.050

    0.010

    2.706

    3.841

    6.635

     

    【答案】1分布列见解析,   

    2i;列联表见解析,(ii)能

    【解析】

    【分析】1)利用超几何分布的知识即可求得分布列及数学期望;

    2)(i)根据中位数的定义即可求得,从而求得列联表;

    ii)利用独立性检验的卡方计算进行检验,即可得解.

    【小问1详解】

    依题意,的可能取值为

    所以的分布列为:

    .

    【小问2详解】

    i)依题意,可知这40只小白鼠体重增量的中位数是将两组数据合在一起,从小到大排后第20位与第21位数据的平均数,观察数据可得第20位为,第21位数据为

    所以

    故列联表为:

     

    合计

    对照组

    6

    14

    20

    实验组

    14

    6

    20

    合计

    20

    20

    40

    ii)由(i)可得,

    所以能有的把握认为小白鼠在高浓度臭氧环境中与正常环境中体重的增加量有差异.

    20. 已知直线与抛物线交于两点,且

    1

    2FC的焦点,MNC上两点,,求面积的最小值.

    【答案】1   

    2

    【解析】

    【分析】1)利用直线与抛物线的位置关系,联立直线和抛物线方程求出弦长即可得出

    2)设直线利用,找到的关系,以及的面积表达式,再结合函数的性质即可求出其最小值.

    【小问1详解】

    可得,,所以

    所以

    ,因为,解得:

    【小问2详解】

    因为,显然直线的斜率不可能为零,

    设直线

    可得,,所以,

    因为,所以

    亦即

    代入得,

    所以,且,解得

    设点到直线的距离为,所以

    所以的面积

    ,所以,

    时,的面积

    【点睛】本题解题关键是根据向量的数量积为零找到的关系,一是为了减元,二是通过相互的制约关系找到各自的范围,为得到的三角形面积公式提供定义域支持,从而求出面积的最小值.

    21. 已知函数

    1,讨论的单调性;

    2恒成立,求a的取值范围.

    【答案】1答案见解析.   

    2

    【解析】

    【分析】1)求导,然后令,讨论导数的符号即可;

    2)构造,计算的最大值,然后与0比较大小,得出的分界点,再对讨论即可.

    【小问1详解】

    ,

    ,.

    ,.

    所以上单调递增,上单调递减

    【小问2详解】

    所以.

    ,

    上单调递减,所以.

    所以当,符合题意.

    ,所以.

    .

    所以,使得,,使得.

    ,即当单调递增.

    所以当,不合题意.

    综上,的取值范围为.

    【点睛】关键点点睛:本题采取了换元,注意复合函数的单调性在定义域内是减函数,,,对应当.

    四、选做题

    22. 已知点,直线t为参数),的倾斜角,lx轴正半轴,y轴正半轴分别交于AB两点,且

    1

    2以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求l的极坐标方程.

    【答案】1   

    2

    【解析】

    【分析】(1)根据的几何意义即可解出;

    2)求出直线的普通方程,再根据直角坐标和极坐标互化公式即可解出.

    【小问1详解】

    因为轴,轴正半轴交于两点,所以

    ,令

    所以,所以

    ,解得

    因为,所以

    【小问2详解】

    由(1)可知,直线的斜率为,且过点

    所以直线的普通方程为:,即

    可得直线的极坐标方程为

    23. ,函数

    1求不等式的解集;

    2若曲线轴所围成的图形的面积为2,求

    【答案】1   

    22

    【解析】

    【分析】1)分讨论即可;

    2)写出分段函数,画出草图,表达面积解方程即可.

    【小问1详解】

    ,,

    ,解得,,

    ,,

    解得,,

    综上,不等式的解集为.

    【小问2详解】

    .

    画出的草图,轴围成,

    的高为,所以,

    所以,解得.

     

     


    相关试卷

    精品解析:2023年高考全国甲卷数学(理)真题(原卷+解析版): 这是一份精品解析:2023年高考全国甲卷数学(理)真题(原卷+解析版),文件包含精品解析2023年高考全国甲卷数学理真题原卷版docx、精品解析2023年高考全国甲卷数学理真题解析版docx等2份试卷配套教学资源,其中试卷共30页, 欢迎下载使用。

    2023年高考全国甲卷数学(理)真题含解析: 这是一份2023年高考全国甲卷数学(理)真题含解析,文件包含精品解析2023年高考全国甲卷数学理真题原卷版docx、精品解析2023年高考全国甲卷数学理真题解析版docx等2份试卷配套教学资源,其中试卷共30页, 欢迎下载使用。

    2023年高考全国甲卷数学(理)真题(解析版): 这是一份2023年高考全国甲卷数学(理)真题(解析版),共24页。试卷主要包含了选择题,填空题,解答题,选做题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map