承德市平泉县2022-2023学年数学六下期末检测试题含解析
展开承德市平泉县2022-2023学年数学六下期末检测试题
一、认真填一填。
1.比较大小。
________ -________ +________+
2.30和45的最大公因数是(______),最小公倍数是(______).
3.分母是17的最大真分数是(____),最小假分数是(____)。
4.天天今年岁,妈妈的年龄是她的6倍,今年她们的年龄和是(______)岁,相差(______)岁。
5.4÷5== = =( )(填小数)
6.如果一个长方体相交于一个顶点的三条棱的长度相等,那么这个长方体一定是正方体.(___)
7.下图是A、B两地2009年上半年每月的平均气温统计图,看图回答问题。
(1)从折线统计图中可以看出,最高月平均气温出现在(________)地。
(2)A地的最低月平均气温是(________)℃。
(3)两地的最高气温都出现在(________)月。
(4)(________)地上半年温差较小,(________)月两地温差最小。
8.分数单位是的最小假分数是_____,最大真分数是_____.
9.制作一个棱长为的正方体框架,共需要铁丝(________),如果把它的六个面都贴上彩纸,至少需要彩纸(________)。
10.8升=( )毫升
8760立方厘米=( )立方分米
0.05立方米=( )立方分米=( )升
二、是非辨一辨。
11.所有的偶数都是合数. .(判断对错)
12.两个数的积一定是这两个数的公倍数。(______)
13.棱长为6cm的正方体,它的体积和表面积相等。(________)
14.分子和分母是互质数的分数一定是最简分数. (_______)
15.一个物体的容积等于它的体积。(________)
16.表面积相等的两个长方体,它们的体积一定相等。(______)
三、细心选一选。请把正确答案的序号填在括号里。
17.小明、小华和小芳各做一架航模飞机,小明用了小时,小华用了小时,小芳用了0.8小时.( )做得最快.
A.小明 B.小华 C.小芳
18.如图,先在大正方形中画出一个最大的圆,再在这个圆中画一个尽可能大的小正方形,那么小正方形的面积是大正方形面积的( )。
A. B. C. D.无法确定
19.如下图,已知各种图形的面积都相等,那么可以在“=”后面表示阴影部分面积运算结果的是( ).
A. B. C. D.
20.下面图( )不可能是这个单孔纸箱的展开图。
A. B. C. D.
21.长方体的长、宽、高都扩大到原来的5倍,则它的棱长之和扩大 到原来的( )倍,表面积扩大到原来的( )倍,体积扩大到原 来的( )倍.
A.5 B.10
C.25 D.125
22.一组积木,从上面看到的形状是(正方形里面的数字表示在这个位置上所有的小正方体的个数), 那么从正面看是( )。
A. B. C. D.
四、用心算一算。
23.直接写出得数。
5÷7= = = =
1-= = = =
24.计算下面各题,怎样简便就怎样算。
-+ 1-- -- +++
25.解方程。
x-1.2=2.53 4x+6x=26 2.8x÷2=7
五、操作与思考。
26.涂色表示图形下面的分数。
六、解决问题。
27.一个长方体玻璃鱼缸,长50cm,宽40cm,高30cm。
(1)做这个鱼缸至少需要多少平方厘米玻璃?(上面没有盖)
(2)这个鱼缸的容积大约是多少升?(玻璃厚度忽略不计)
(3)在鱼缸里注入40L水,水深大约是多少厘米?
28.下面是护士为一位病人测量体温的统计图.
(1)这是一幅 统计图,护士每隔 小时给该病人量一次体温.这位病人的最高体温是 ,最低体温是 .
(2)病人的体温在哪一段时间里下降最快?哪一段时间体温比较稳定?
(3)从体温上观察,这位病人的病情是好转还是恶化?
29.一种正方体混凝土预制件,它的棱长4分米。这个预制件的体积是_____立方分米。用5个这样的预制件摆成一个长方体,这个长方体的占地面积是_____平方分米。
30.一个体积是160cm³的长方体,它的前面的面积是32cm2,右侧面的面积是20cm2,它的底面积是多少平方厘米?
31.一批货物共60吨,第一次运走了40吨,运走了总数的几分之分?还剩总数的几分之几?
32.教练陪小明练习100米蛙泳,他们两人游泳的路程和时间的关系如下图:
请你看图回答问题.
(1)小明比教练先游多少秒?教练到达终点时,小明还要再游多少秒?
(2)小明游到多少米时速度明显慢了下来?
(3)教练游的时间比小明少多少秒?
33.李师傅3小时加工零件8个,张师傅4小时加工零件11个,王师傅5小时加工零件13个,三人中谁做得最快?请说明理由。
参考答案
一、认真填一填。
1、< > <
【分析】比较两个异分母分数大小,可以先通分,变成同分母分数,再比较大小;
同分母分数比较大小,分子越大,这个分数就越大;
同分子分数比较大小,分母越大,这个分数就越小,据此判断。
【详解】因为=,=,<,所以<;
因为===,>,所以>;
因为<,所以<。
此题考查的是对分数大小的比较,能正确通分与化简分数是解题的关键。
2、15 90
【解析】略
3、
【解析】略
4、7a 5a
【分析】根据题意可知今年妈妈的年龄是6a,今年妈妈和天天的年龄和是6a+a=7a,相差6a-a=5a,据此解答。
【详解】今年妈妈的年龄是:6×a=6a;
今年她们的年龄和是:6a+a=7a;
她们的年龄差是:6a-a=5a。
字母与字母相乘或字母与数字相乘时中间的“×”号可以省略不写,注意数字要在字母的前面。
5、 ; ; ;0.8
【详解】略
6、正确
【详解】因为相交于一个顶点的三条棱正好是长方体的长宽高,三条棱的长度相等,则长宽高相等,长宽高都相等的长方体就是正方体
故答案为正确.
7、A 8 6 B 5
【分析】根据复式折线统计图填表即可。
【详解】根据统计图可得:
(1)从折线统计图中可以看出,最高月平均气温出现在( A )地。
(2)A地的最低月平均气温是( 8 )℃。
(3)两地的最高气温都出现在( 6 )月。
(4)( B )地上半年温差较小,( 5 )月两地温差最小。
故答案为:A;8;6;B;5
本题主要考查复式折线统计图,解题的关键是提取统计图中信息。
8、
【详解】解:(1)大于等于10的数中10是最小的,所以分数单位是的最小假分数是;
(2)小于10的数中9是最大的,所以分数单位是的最大真分数是;
故答案为,
9、36 54
【分析】求共需要铁丝多少分米,就是求正方体的棱长总和,正方体棱长总和=棱长×12;求需要彩纸多少平方分米,就是求正方体的表面积,正方体的表面积=棱长×棱长×6。据此即可解答。
【详解】(1)3×12=36(dm);
(2)3×3×6
=9×6
=54(dm²)
熟练掌握正方体的棱长总和和表面积的公式是解题的关键。
10、7800 8.76 50 50
【解析】略
二、是非辨一辨。
11、×
【解析】试题分析:明确偶数和合数的定义,根据它们的定义即可解答.
解:偶数是能被2整除的数,合数是除了1和它本身以外还有别的约数,2只有1和它本身两个约数,2是偶数但不是合数.
故答案为×.
【点评】此题考查的目的 是明确偶数与合数的定义,理解和掌握它们的区别.
12、√
【详解】略
13、×
【分析】体积是物体所占空间的大小,表面积是正方体6个面的面积和。体积和表面积不同,无法比较大小。
【详解】棱长为6cm的正方体,体积是216立方厘米;表面积是216平方厘米;单位不同,无法比较大小。
故答案为:×
此题解答关键是明确:只有同类量才能进行比较大小,不是同类量无法进行比较。
14、√
【详解】分子分母互质的分数为最简分数,即分子分母没有除一以为的公因数
故答案为√
掌握最简分数的意义以及互质的概念是本题的关键
15、×
【分析】容积是从物体内部测量数据,体积是从物体外部测量数据,据此分析。
【详解】容积是指物体所能容纳物质的大小,体积是指物体所占空间的大小,一个物体的容积不等于体积,所以原题说法错误。
本题考查了容积和体积,一般情况容积<体积。
16、×
【详解】试题分析:可以举出表面积相等的两个长方体,但体积不相等的反例,继而得出结论。
解:如:长宽高分别为2,4,6的长方体表面积为:(2×4+2×6+4×6)×2=88,体积为:2×4×6=48;
长宽高分别为2,2,10的长方体表面积为:(2×2+2×10+2×10)×2=88,体积为:2×2×10=40
故表面积相等的两个长方体,体积也相等的说法是错误的。
故答案为×。
【点评】
此题应根据长方体的表面积和体积计算公式进行分析解答。
三、细心选一选。请把正确答案的序号填在括号里。
17、A
【详解】略
18、A
【分析】设圆的半径为r,则小正方形的对角线等于圆的直径,大正方形的边长等于圆的直径,据此用圆的半径分别表示出两个圆的面积,最后小圆面积除以大圆面积即可。
【详解】设圆的半径为r,则较小正方形的面积为:
2r×r÷2×2
=2r2÷2× 2
= 2r2
较大正方形面积为:
2r× 2r=4r2
2r2÷4r2
=2÷4
=
故选择:A。
解答此题的关键根据中间量圆,找出两个正方形之间的关系。
19、D
【解析】略
20、D
【解析】略
21、ACD
【解析】略
22、B
【分析】根据从上面看的是,则从正面看的有2列,从左到右依次有2个、1个。
【详解】根据分析可知,从上面看到的形状是(正方形里面的数字表示在这个位置上所有的小正方体的个数), 那么从正面看是。
故答案为:B
此题主要考查了从不同方向观察物体和几何体,锻炼了学生的空间想象力和创新思维能力。
四、用心算一算。
23、;1;;;
;;;0
【分析】根据分数与除法的关系,分数加减法计算即可。
【详解】5÷7= =1 =+= ==
1-= == = =0
直接写得数时,注意数据特点和运算符号,细心解答即可。
24、;;;2
【分析】把三个分数一起通分,按照从左到右的顺序计算;先通分按照从左到右的顺序计算;根据减法的性质连续减两个数等于减去这两个数的和;根据加法交换律和结合律,把分母相同的分数结合在一起再计算。
【详解】-+
=
=
1--
=
=
=
--
= -(+)
= -1
=
+++
= (+)+(+)
=1+1
=2
此题考查异分母分数加减混合运算,把同分母的分数要根据加法交换律和结合律放在一起计算,有时可以避免通分的繁琐计算。
25、x=3.73;x=2.6;x=5
【分析】方程两边同时加1.2;计算方程左边,再同时除以10;方程两边同时乘2,再除以2.8。
【详解】x-1.2=2.53
解:x=2.53+1.2
x=3.73
4x+6x=26
解:10x=26
x=2.6
2.8x÷2=7
解:2.8x=2×7
2.8x=14
x=5
解方程的主要依据是等式的基本性质,等式两边同时加或减相同的数,等式仍然成立;等式两边同时乘或除以相同的数(不为0)等式仍然成立。
五、操作与思考。
26、(涂法不唯一)
【分析】将单位“1”平均分成若干份,表示这样一份或几份的数为分数.平方厘米是8平方厘米的 ,据此意义结合图形及所给分数涂色即可.
【详解】由分析画图如下:
此题是考查分数的意义.把单位“1”平均分成若干份,用分数表示,分母是分成的份数,分子是要表示的份数。
六、解决问题。
27、(1)7400 cm2 (2)60 L (3)20 cm
【解析】(1)50×40+(40×30+30×50)×2=7400(cm2)
答:做这个鱼缸至少需要7400 cm2玻璃。
(2)50×40×30=60000(cm3)
60000cm3=60dm3=60L
答:这个鱼缸的容积大约是60L。
(3)40 L=40 dm3=40000cm3
40000÷(50×40)=20(cm)
答:水深大约是20cm。
28、折线,6,39.5℃,36.8℃,0时~6时,6时~12时,好转
【解析】试题分析:(1)这是一幅折线统计图,从这幅统计图中可以看出护士每隔几小时给病人量一次体温;还可以看出病人的最高体温与最低体温是多少℃;
(2)由统计图还可以看出,在0时到6时这段时间里体温下降得最快;从6时~12时体温比较稳定;
(3)从体温上观察,这位病人的体温已趋于正常,说明病情是在好转.
解:(1)这是一幅折线统计图,护士每隔6小时给该病人量一次体温.这位病人的最高体温是39.5℃,最低体温是36.8℃;
(2)病人的体温在在0时~6时这段时间里体温下降得最快;从6时到12时体温比较稳定;
(3)从体温上观察,这位病人的体温已趋于正常,说明病情是在好转.
故答案为折线,6,39.5℃,36.8℃,0时~6时,6时~12时,好转.
点评:本题是考查如何从折线统计图中获取信息,并对所获取的信息进行整理、分析、预测等.
29、64 80
【分析】
首先根据正方体的体积公式:v=a3,把数据代入公式即可求出它的体积,用5个这样的预制件摆成一个长方体,这个长方体的占地面积等于这个正方体的底面积的5倍,根据正方形的面积=边长×边长,把数据代入公式解答。
【详解】
4×4×4=64(立方分米),
4×4×5=80(平方分米),
答:这个预制件的体积是64立方分米,这个长方体的占地面积是80平方分米。
故答案为64,80。
此题主要考查正方形的面积公式、正方体的体积公式的灵活运用。
30、40平方厘米
【解析】(160÷32)×(160÷20)=40(平方厘米)
31、
【详解】40÷60=
1-=
答:运走了总数的,还剩总数的.
32、(1)横轴代表的是时间,可以看出小明比教练先游了10秒;到达终点的时候小明和教练相差了5秒.
(2)从小明的折线图中可以看出在20秒的时候,折线变得平缓了,而折线的平缓程度表示的是游动的速度.
(3)教练后出发了10秒,而且先小明5秒到的终点,所以教练的时间比小明多:
10+5=15(秒)
答:小明比教练先游了10秒,教练到达终点的时候,小明还要再游5秒.
【解析】①横轴代表队的是时间,可以看出小明比教练先游了10秒;到达终点的时候小明和教练相差了5秒②从小明的折线图中可以看出在20秒的时候,折线变得平缓了,而折线的平缓程度表示的是游动的速度③教练后出发了10秒,而且先小明5秒到的终点,所以教练的时间比小明多:10+5=15(秒)答:小明比教练先游了10秒,教练到达终点的时候,小明还要再游5秒;小明游到20秒的时候速度明显慢了下来;教练游的时间比小明少了15秒.
【分析】两个折线的起点和终点不一样,所以他们的时间就不想同
33、张师傅,理由见解析
【分析】由题意可知:李师傅3小时加工零件8个,张师傅4小时加工零件11个,王师傅5小时加工零件13个,根据工作效率=工作总量÷工作时间,求出每个人的工作效率再进行比较即可。
【详解】李:(个)
张:(个)
李:(个)
答:张师傅最快。
本题考查了简单的工程问题,关键是要掌握工作效率=工作总量÷工作时间,计算时也要注意细心。
承德市平泉县2022-2023学年数学五下期末学业水平测试模拟试题含解析: 这是一份承德市平泉县2022-2023学年数学五下期末学业水平测试模拟试题含解析,共7页。试卷主要包含了用心思考,我会填,仔细推敲,我会选,火眼金睛,我会判,细心审题,我能算,心灵手巧,我会画,我会解决问题等内容,欢迎下载使用。
承德市平泉县2022-2023学年数学四年级第二学期期末调研试题含解析: 这是一份承德市平泉县2022-2023学年数学四年级第二学期期末调研试题含解析,共6页。试卷主要包含了认真思考,巧填空,仔细推敲,巧判断,仔细选一选,仔细计算,图形与统计,生活中的数学等内容,欢迎下载使用。
承德市平泉县2022-2023学年三下数学期末达标检测模拟试题含解析: 这是一份承德市平泉县2022-2023学年三下数学期末达标检测模拟试题含解析,共5页。试卷主要包含了谨慎判一判,仔细选一选,认真填一填,细心算一算,动手操作,想一想,解一解等内容,欢迎下载使用。