备战2024高考数学艺体生一轮复习讲义-艺术生仿真演练综合测试(二)
展开2023年艺考生仿真演练综合测试(二)
第Ⅰ卷
一、选择题:本题共8小题,每小题5分,共40分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合,则集合的子集的个数为( )
A.8 B.7 C.4 D.3
2.复数的虚部为( )
A. B. C. D.
3.已知单位向量,的夹角为,向量,且,则的值为( )
A.1 B. C. D.2
4.已知等差数列的前项和为,若且,则( )
A. B. C. D.
5.已知双曲线C的中心位于坐标原点,焦点在坐标轴上,且虚轴比实轴长.若直线与C的一条渐近线垂直,则C的离心率为( )
A. B. C. D.
6.已知事件,,的概率均不为,则的充要条件是( )
A. B.
C. D.
7.在四棱锥中,正方形所在平面与所在平面相互垂直,为上一点,且为正方形的中心,四棱锥体积的最大值为,则三棱锥的外接球的表面积为( )
A. B. C. D.
8.已知函数,,,,则( )
A. B.
C. D.
二、选择题:本题共4小题,每小题5分,共20分。在每小题给出的选项中,有多项符合题目要求。全部选对的得5分,部分选对的得2分,有选错的得0分。
9.中国共产党第二十次全国代表大会的报告中,一组组数据折射出新时代十年的非凡成就,数字的背后是无数的付出,更是开启新征程的希望.二十大首场新闻发布会指出近十年我国居民生活水平进一步提高,其中2017年全国居民恩格尔系数为29.39%,这是历史上中国恩格尔系数首次跌破30%.恩格尔系数是由德国统计学家恩斯特·恩格尔提出的,计算公式是“恩格尔系数”.恩格尔系数是国际上通用的衡量居民生活水平高低的一项重要指标,一般随居民家庭收入和生活水平的提高而下降,恩格尔系数达60%以上为贫困,50%~60%为温饱,40%~50%为小康,30%~40%为富裕,低于30%为最富裕.如图是近十年我国农村与城镇居民的恩格尔系数折线图,由图可知( )
A.城镇居民2015年开始进入“最富裕”水平
B.农村居民恩格尔系数的平均数低于32%
C.城镇居民恩格尔系数的第45百分位数高于29%
D.全国居民恩格尔系数等于农村居民恩格尔系数和城镇居民恩格尔系数的平均数
10.已知函数,则下列说法正确的有( )
A.的图象关于点中心对称
B.的图象关于直线对称
C.在上单调递减
D.将的图象向左平移个单位,可以得到的图象
11.已知定义在上的函数满足:关于中心对称,关于对称,且.则下列选项中说法正确的有( )
A.为奇函数 B.周期为2
C. D.是奇函数
12.如图,在正方体中,点P是底面(含边界)内一动点,且平面,则下列选项正确的是( )
A. B.三棱锥的体积为定值
C.平面 D.异面直线与所成角的取值范围为
第Ⅱ卷
三、填空题:本题共4小题,每小题5分,共20分。
13.在的展开式中,的系数是__________.
14.已知二次函数满足条件:(1)的图象关于y轴对称;(2)曲线在处的导数为4,则的解析式可以是__________.
15.已知抛物线的焦点为F,准线为l,点P在D上,PA与l垂直,垂足为A,若,则的面积等于______.
16.如图,在中,,且,则面积的最大值________.
四、解答题:本题共6小题,共70分。解答应写出文字说明、证明过程或演算步棸。
17.(10分)
佛山新城文化中心是佛山地标性公共文化建筑.在建筑造型上全部都以最简单的方块体作为核心要素,与佛山世纪莲体育中心的圆形莲花造型形成“方”“圆”呼应.坊塔是文化中心的标志性建筑、造型独特、类似一个个方体错位堆叠,总高度153.6米.坊塔塔楼由底部4个高度相同的方体组成塔基,支托上部5个方体,交错叠合成一个外形时尚的塔身结构.底部4个方体高度均为33.6米,中间第5个方体也为33.6米高,再往上2个方体均为24米高,最上面的两个方体均为19.2米高.
(1)请根据坊塔方体的高度数据,结合所学数列知识,写出一个等差数列的通项公式,该数列以33.6为首项,并使得24和19.2也是该数列的项;
(2)佛山世纪莲体育中心上层屋盖外径为310米.根据你得到的等差数列,连续取用该数列前m()项的值作为方体的高度,在保持最小方体高度为19.2米的情况下,采用新的堆叠规则,自下而上依次为、、、……、(表示高度为的方体连续堆叠层的总高度),请问新堆叠坊塔的高度是否超过310米?并说明理由.
18.(12分)
记的内角的对边分别为,已知.
(1)求;
(2)设的中点为,若,且,求的的面积.
19.(12分)
如图,在四棱锥中,底面ABCD为直角梯形,其中,,,,平面ABCD,且,点M在棱PD上(不包括端点),点N为BC中点.
(1)若,求证:直线平面PAB;
(2)求二面角的余弦值.
20.(12分)
“体育强则国家强,国运兴则体育兴”,多参加体育运动能有效增强中学生的身体素质.篮球和排球是我校学生最为喜爱的两项运动,为调查喜爱运动项目与性别之间的关系,某调研组在校内随机采访男生、女生各50人,每人必须从篮球和排球中选择最喜爱的一项,其中喜爱排球的归为甲组,喜爱篮球的归为乙组,调查发现甲组成员48人,其中男生18人.
(1)根据以上数据,填空下述列联表:
| 甲组 | 乙组 | 合计 |
男生 |
|
|
|
女生 |
|
|
|
合计 |
|
|
|
(2)根据以上数据,能否有95%的把握认为学生喜欢排球还是篮球与“性别”有关?
(3)现从调查的女生中按分层抽样的方法选出5人组成一个小组,抽取的5人中再随机抽取3人发放礼品,求这3人中在甲组中的人数的概率分布列及其数学期望.
参考公式:,其中为样本容量.
参考数据:
0.50 | 0.05 | 0.01 | |
0.455 | 3.841 | 6.635 |
21.(12分)
已知动圆经过定点,且与圆:内切.
(1)求动圆圆心的轨迹的方程;
(2)设轨迹与轴从左到右的交点为点,点为轨迹上异于的动点,设交直线于点,连结交轨迹于点.直线、的斜率分别为、.
(i)求证:为定值;
(ii)证明直线经过轴上的定点,并求出该定点的坐标.
22.(12分)
已知函数.
(1)若存在使得成立,求a的取值范围;
(2)设函数有两个极值点,且,求证:.
备战2024高考数学艺体生一轮复习40天突破90分讲义艺术生仿真演练综合测试(一)(原卷版+解析版): 这是一份备战2024高考数学艺体生一轮复习40天突破90分讲义艺术生仿真演练综合测试(一)(原卷版+解析版),共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
备战2024高考数学艺体生一轮复习40天突破90分讲义艺术生仿真演练综合测试(二)(原卷版+解析版): 这是一份备战2024高考数学艺体生一轮复习40天突破90分讲义艺术生仿真演练综合测试(二)(原卷版+解析版),共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
备战2024高考数学艺体生一轮复习40天突破90分讲义word版艺术生仿真演练综合测试(二)(原卷版): 这是一份备战2024高考数学艺体生一轮复习40天突破90分讲义word版艺术生仿真演练综合测试(二)(原卷版),共7页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。