终身会员
搜索
    上传资料 赚现金
    2024年新高考数学一轮复习 第二章 第二节 第一课时 函数的单调性与最大(小)值 试卷课件
    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 课件
      第二节 第一课时 函数的单调性与最大(小)值.pptx
    • 练习
      课时跟踪检测(七) 函数的单调性与最大(小)值.doc
    2024年新高考数学一轮复习 第二章 第二节 第一课时 函数的单调性与最大(小)值 试卷课件01
    2024年新高考数学一轮复习 第二章 第二节 第一课时 函数的单调性与最大(小)值 试卷课件02
    2024年新高考数学一轮复习 第二章 第二节 第一课时 函数的单调性与最大(小)值 试卷课件03
    2024年新高考数学一轮复习 第二章 第二节 第一课时 函数的单调性与最大(小)值 试卷课件04
    2024年新高考数学一轮复习 第二章 第二节 第一课时 函数的单调性与最大(小)值 试卷课件05
    2024年新高考数学一轮复习 第二章 第二节 第一课时 函数的单调性与最大(小)值 试卷课件06
    2024年新高考数学一轮复习 第二章 第二节 第一课时 函数的单调性与最大(小)值 试卷课件07
    2024年新高考数学一轮复习 第二章 第二节 第一课时 函数的单调性与最大(小)值 试卷课件08
    2024年新高考数学一轮复习 第二章 第二节 第一课时 函数的单调性与最大(小)值 试卷课件01
    2024年新高考数学一轮复习 第二章 第二节 第一课时 函数的单调性与最大(小)值 试卷课件02
    2024年新高考数学一轮复习 第二章 第二节 第一课时 函数的单调性与最大(小)值 试卷课件03
    还剩36页未读, 继续阅读
    下载需要15学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024年新高考数学一轮复习 第二章 第二节 第一课时 函数的单调性与最大(小)值

    展开
    这是一份2024年新高考数学一轮复习 第二章 第二节 第一课时 函数的单调性与最大(小)值,文件包含第二节第一课时函数的单调性与最大小值pptx、课时跟踪检测七函数的单调性与最大小值doc等2份课件配套教学资源,其中PPT共44页, 欢迎下载使用。

    课时跟踪检测() 函数的单调性与最大()

    一、全员必做题

    1.(2021·全国甲卷)下列函数中是增函数的为(  )

    A.f(x)=-x  B.f(x)=x

    C.f(x)=x2  D.f(x)=

    解析:选D 函数f(x)=-x是一次函数,在R上是减函数;函数f(x)=x是指数函数,底数0<<1,所以函数f(x)在R上是减函数;函数f(x)=x2是二次函数,在(-,0]上是减函数,在[0,+)上是增函数;函数f(x)=x是幂函数,指数>0,所以函数f(x)在R上是增函数.故选D.

    2.(多选)关于函数f(x)=,下列判断正确的是(  )

    A.f(x)在(-1,+)上单调递减

    B.f(x)在(-1,+)上单调递增

    C.f(x)在(-,-1)上单调递减

    D.f(x)在(-,-1)上单调递增

    解析:选AC 因为f(x)==-1+,所以f(x)在(-,-1)和(-1,+)上单调递减,则A、C正确,B、D错误.故选A、C.

    3.已知函数f(x)是定义域为[0,+)上的减函数,且f(2)=-1,则满足f(2x-4)>-1的实数x的取值范围是(  )

    A.(3,+)  B.(-,3)

    C.[2,3)  D.[0,3)

    解析:选C f(x)在定义域[0,+)上是减函数,且f(2)=-1,f(2x-4)>-1可化为f(2x-4)>f(2),解得2x<3.

    4.(2023·吉林长春吉大附中模拟)定义在R上的函数f(x)满足对任意的x1x2(x1x2)恒有x1f(x1)-x1f(x2)-x2f(x1)+x2f(x2)>0,若af(0),bf(1),cf(2),则(  )

    A.c<b<a  B.a<b<c

    C.c<a<b  D.a<c<b

    解析:选B 因为x1f(x1)-x1f(x2)-x2f(x1)+x2f(x2)>0,所以(x1x2)[f(x1)f(x2)]>0,即>0,因为定义在R上的函数f(x)对任意的x1x2(x1x2)都满足>0,所以f(x)在R上单调递增,因为af(0),bf(1),cf(2),所以f(2)>f(1)>f(0),即a<b<c.

    5.函数f(x)=的值域为(  )

    A.

    B.

    C.

    D.

    解析:选D 依题意,f(x)=·,其中y=-·的值域为(-,0)(0,+),故函数f(x)的值域为,故选D.

    6.已知函数f(x)=x[mm1]时,不等式f(2mx)<f(xm)恒成立,则实数m的取值范围是(  )

    A.(-,-4)  B.(-,-2)

    C.(-2,2)  D.(-,0)

    解析:选B 易知函数f(x)在xR上单调递减,又f(2mx)<f(xm)在x[mm1]上恒成立,所以2mx>xm,即2x<mx[mm1]上恒成立,所以2(m+1)<m,解得m<-2.

    7.(多选)已知函数f(x)=则(  )

    A.f(-1)=-2

    B.若f(a)=1,则a=0或a=2

    C.函数f(x)在(0,1)上单调递减

    D.函数f(x)在[1,2]的值域为[1,3]

    解析:选BD 函数f(x)的图象如图所示.f(-1)=-2×(-1)+1=3,故A错误;当a<0时,f(a)=1-2a+1=1a=0,此时方程无解;当a0时,f(a)=1a2+2a+1=1a=0或a=2,故B正确;由图象可得,f(x)在(0,1)上单调递增,故C错误;由图象可知当x[1,2]时,f(x)min=min{f(0),f(2)}=1,f(x)max=max{f(-1),f(1)}=3,故f(x)在[1,2]的值域为[1,3],D正确.

    8.函数f(x)=的最大值为________.

    解析:当x1时,函数f(x)=为减函数,所以f(x)在x=1处取得最大值,为f(1)=1;当x<1时,易知函数f(x)=-x2+2在x=0处取得最大值,为f(0)=2.故函数f(x)的最大值为2.

    答案:2

    9.已知奇函数f(x)在[0,+)上单调递减,若f(2a-1)>f(1),则实数a的取值范围为________.

    解析:因为奇函数f(x)在[0,+)上单调递减,所以f(x)在(-,0)上单调递减,且f(0)=0,所以f(x)在R上单调递减,则f(2a-1)>f(1)等价于2a-1<1,解得a<1.

    答案:(-,1)

    10.已知函数f(x)=xg(x)=2xa-1,若对于任意x1,存在x2[2,3],使得f(x1)g(x2),则实数a的取值范围是________.

    解析:根据题意可得f(x1)ming(x2)minf(x)=x上单调递减,则f(x)f(1)=5,又g(x)=2xa-1在[2,3]上单调递增,则g(x)g(2)=a+3,5a+3,则a2.

    答案:(-,2]

    11.已知函数f(x)=+2.

    (1)判断函数f(x)在(0,+)上的单调性,并用定义法证明你的结论;

    (2)若x[2,7],求函数的最大值和最小值.

    解:(1)函数f(x)在(0,+)上是减函数,证明如下:

    任取x1x2, 且0<x1<x2

    f(x1)-f(x2)=+2- .

    因为0<x1<x2,所以x2x1>0,x1x2>0,

    所以f(x1)-f(x2)>0,即f(x1)>f(x2),

    所以f(x)=+2在区间(0,+)上是减函数.

    (2)因为函数f(x)=+2在区间[2,7]上是减函数,

    所以f(x)maxf(2)=f(x)minf(7)=.

    12.已知函数f(x)=

    (1)用定义法证明f(x)在(0,2)上单调递减,在(2,+)上单调递增;

    (2)若f(x)的最小值是6,求a的值.

    解:(1)证明:对任意的x1>x2>0,

    f(x1)-f(x2)=x1a.

    当0<x2<x1<2时,x1x2>0,0<x1x2<4,则<0,

    f(x1)<f(x2);

    x1>x2>2时,x1x2>0,x1x2>4,

    >0,即f(x1)>f(x2).

    综上,f(x)在(0,2)上单调递减,在(2,+)上单调递增.

    (2)由(1)可知f(x)在(0,+)上的最小值是f(2)=4-a.

    x0时,f(x)=x2-2axa2a,其图象的对称轴方程是直线xa.

    a0,f(x)在(-,0]上单调递减,则f(x)在(-,0]上的最小值是f(0)=a2a.

    a<0,f(x)在(-a]上单调递减,在(a,0]上单调递增,则f(x)在(-,0]上的最小值是f(a)=-a.

    综上,f(x)min

    因为f(x)的最小值是6,所以解得a=-6.

    二、重点选做题

    1.(2023·哈尔滨高三开学考试)(多选)已知函数yf(x-1)的图象关于直线x=1对称,且对于yf(x)(xR),当x1x2[0,+),且x1x2时,<0恒成立.若f(2ax)<f(2x2+1)对任意的xR恒成立,则实数a的范围可以是下面选项中的(  )

    A.(-,1)  B.

    C.(0,)  D.(,2)

    解析:选ABC 因为函数yf(x-1)的图象关于直线x=1对称,所以f(x)的图象关于y轴对称,即f(x)为偶函数,又当x1x2[0,+),且x1x2时,<0恒成立,即>0恒成立,所以f(x)在[0,+)上单调递增,在(-,0)上单调递减.若f(2ax)<f(2x2+1)对任意的xR恒成立,即|2ax|<2x2+1恒成立,即-2x2-1<2ax<2x2+1恒成立,即恒成立,即Δ=4a2-8<0,解得-<a<,即a(-),故符合条件的有A、B、C;故选A、B、C.

    2.(多选)关于函数y,下列说法正确的是 (  )

    A.在区间[1,0]上单调递减

    B.单调递增区间为[3,-1]

    C.最大值为2

    D.没有最小值

    解析:选ABC 由 4-(x+1)20,得-3x1,即函数y的定义域为[3,1],令t=4-(x+1)2,则t=4-(x+1)2的图象是开口向下,对称轴为x=-1的抛物线,所以函数t=4-(x+1)2[3,-1]上单调递增,在[1,1]上单调递减,又y单调递增,所以y[3,-1]上单调递增,在[1,1]上单调递减,故A、B正确;ymax=2,当x=-3时,y=0,当x=1时,y=0,则ymin=0,故C正确,D错误.

    3.(多选)已知函数f(x)的定义域为D,若存在区间[mn]D使得:

    (1)f(x)在[mn]上是单调函数;

    (2)f(x)在[mn]上的值域是[2m,2n],则称区间[mn]为函数f(x)的倍值区间”.

    下列函数中存在倍值区间的有(  )

    A.f(x)=x2  B.f(x)=

    C.f(x)=x  D.f(x)=

    解析:选ABD 函数中存在倍值区间,则(1)f(x)在[mn]上是单调函数,(2)对于A,f(x)=x2,若存在倍值区间[mn],则f(x)=x2存在倍值区间[0,2];对于B,f(x)=,若存在倍值区间[mn],当x>0时,mn,故只需mn即可,故存在;对于C,f(x)=x,当x>0时,在区间[0,1]上单调递减,在区间[1,+)上单调递增,若存在倍值区间[mn][0,1]m=2nn=2mm2-2mn+1=0,n2-2mn+1=0m2n2不符合题意;若存在倍值区间[mn][1,+)m=2mn=2nm2n2=1不符合题意,故此函数不存在倍值区间;对于D,f(x)=,所以f(x)在区间[0,1]上单调递增,在区间[1,+)上单调递减,若存在倍值区间[mn][0,1]=2m=2nm=0,n,即存在倍值区间.

    4.定义在(0,+)上的函数f(x)满足下面三个条件:

    对任意正数ab,都有f(a)+f(b)=f(ab);

    x>1时,f(x)<0;f(2)=-1.

    (1)求f(1)和f的值;

    (2)试用单调性定义证明:函数f(x)在(0,+)上是减函数;

    (3)求满足f(4x3-12x2)+2>f(18x)的x的取值集合.

    解:(1)令xy=1得f(1)=f(1)+f(1),则f(1)=0,

    f(4)=f(2)+f(2)=-1-1=-2, 且f(4)+ff(1)=0,则f=2.

    (2)证明:取定义域中的任意的x1x2,且0<x1<x2

    >1,当x>1时,f(x)<0,f<0,

    f(x2)-f(x1)=ff(x1)=f(x1)+ff(x1)=f<0,即f(x2)<f(x1),

    f(x)在(0,+)上是减函数.

    (3)f(4x3-12x2)+2>f(18x),由条件及(1)的结果得,f(4x3-12x2)+f>f(18x), f(x3-3x2)>f(18x),解得3<x<6,故x的取值集合为{x|3<x<6}.

    相关课件

    高中数学人教A版 (2019)必修 第一册3.2 函数的基本性质课文课件ppt: 这是一份高中数学人教A版 (2019)必修 第一册3.2 函数的基本性质课文课件ppt,共17页。PPT课件主要包含了单调性,fx1,fx2,fxx2,-∞0,单调性与单调区间,0+∞,几点注意事项,单调性的证明,求单调区间等内容,欢迎下载使用。

    备战2024高考一轮复习数学(理) 第二章 函数的概念及基本初等函数(Ⅰ) 第二节 函数的单调性与最大(小)值课件PPT: 这是一份备战2024高考一轮复习数学(理) 第二章 函数的概念及基本初等函数(Ⅰ) 第二节 函数的单调性与最大(小)值课件PPT,共46页。PPT课件主要包含了增函数,减函数,函数的最值,fx≤M,fx0=M,fx≥M等内容,欢迎下载使用。

    高考数学(理数)一轮复习2.2《函数的单调性与最大(小)值》课件(含详解): 这是一份高考数学(理数)一轮复习2.2《函数的单调性与最大(小)值》课件(含详解),共44页。

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        2024年新高考数学一轮复习 第二章 第二节 第一课时 函数的单调性与最大(小)值 试卷课件
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map