2023年四川省达州市宣汉县中考一模数学试题(含解析)
展开这是一份2023年四川省达州市宣汉县中考一模数学试题(含解析),共24页。试卷主要包含了单选题,羊二,直金十九两;牛二,填空题,解答题等内容,欢迎下载使用。
2023年四川省达州市宣汉县中考一模数学试题
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.-2的倒数是( )
A.-2 B. C. D.2
2.2022年4月16日,神舟十三号飞船脱离天宫空间站后成功返回地面,总共飞行里程约198000公里.数据198000用科学记数法表示为( )
A. B. C. D.
3.下列计算结果正确的是( )
A. B. C. D.
4.下列立体图形中,俯视图是三角形的是( )
A. B. C. D.
5.如图,直线相交于点,若,则的度数是( )
A.30° B.40° C.60° D.150°
6.六位同学的年龄分别是13、14、15、14、14、15岁,关于这组数据,正确说法是( )
A.平均数是14 B.中位数是14.5 C.方差3 D.众数是14
7.我国古代数学名著《九章算术》记载:“今有牛五、羊二,直金十九两;牛二、羊三,直金十二两.问牛、羊各直金几何?”题目大意是:5头牛、2只羊共19两银子;2头牛、3只羊共12两银子,每头牛、每只羊各多少两银子?设1头牛两银子,1只羊两银子,则可列方程组为( )
A. B. C. D.
8.如图,菱形对角线交点与坐标原点重合,点,则点的坐标为( )
A. B. C. D.
9.如图,在中,的平分线交于点D,DE//AB,交于点E,于点F,,则下列结论错误的是( )
A. B. C. D.
10.已知关于x的方程的两实数根为,若,则m的值为( )
A.-3 B.1 C.-3或1 D.-1或3
11.为⊙外一点,与⊙相切于点,,,则的长为( )
A. B. C. D.
12.如图,在边长为3的正方形中,点是边上的点,且,过点作的垂线交正方形外角的平分线于点,交边于点,连接交边于点,则的长为( )
A. B. C. D.1
二、填空题
13.分解因式:=______.
14.计算:______.
15.如图,在中,,,分别以点A,B为圆心,大于的长为半径作弧,两弧分别相交于点M,N,作直线,交于点D,连接,则的度数为_____.
16.如图,和是以点为位似中心的位似图形.若,则与的周长比是_________.
17.如图,菱形的对角线相交于点O,,则菱形的周长为 ___________.
18.如图,已知点,,直线经过点.试探究:直线与线段有交点时的变化情况,猜想的取值范围是______.
三、解答题
19.
20.解方程:x2-2x-3=0
21.先化简,再求值:,其中m为满足-1<m<4的整数.
22.如图,B是线段AC的中点,,求证:.
23.去年,我国南方某地一处山坡上一座输电铁塔因受雪灾影响,被冰雪从C处压折,塔尖恰好落在坡面上的点B处,造成局部地区供电中断,为尽快抢通供电线路,专业维修人员迅速奔赴现场进行处理,在B处测得BC与水平线的夹角为45°,塔基A所在斜坡与水平线的夹角为30°,A、B两点间的距离为16米,求压折前该输电铁塔的高度(结果保留根号).
24.如图,反比例函数的图象与过点,的直线交于点B和C.
(1)求直线AB和反比例函数的解析式.
(2)已知点,直线CD与反比例函数图象在第一象限的交点为E,直接写出点E的坐标,并求的面积.
25.如图,为的直径,点C是上一点,点D是外一点,,连接交于点E.
(1)求证:是的切线.
(2)若,求的值.
26.如图,在平面直角坐标系中,已知抛物线经过,两点,直线与轴交于点.
(1)求,的值;
(2)经过点的直线分别与线段,直线交于点,,且与的面积相等,求直线的解析式;
(3)是抛物线上位于第一象限的一个动点,在线段和直线上是否分别存在点,,使,,,为顶点的四边形是以为一边的矩形?若存在,求出点的坐标;若不存在,请说明理由.
参考答案:
1.B
【分析】根据倒数的定义(两个非零数相乘积为1,则说它们互为倒数,其中一个数是另一个数的倒数)求解.
【详解】解:-2的倒数是-,
故选:B.
【点睛】本题难度较低,主要考查学生对倒数等知识点的掌握.
2.C
【分析】用科学记数法表示较大的数时,一般形式为,其中,为整数.
【详解】解:.
故选:C.
【点睛】本题考查了科学记数法,科学记数法的表示形式为的形式,其中,为整数.确定的值时,要看把原来的数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同.当原数绝对值时,是正数;当原数的绝对值时,是负数,确定与的值是解题的关键.
3.D
【分析】根据单项式的减法、除法及同底数幂的除法、积的乘方运算依次计算判断即可.
【详解】解:A、5a-3a=2a,选项错误;
B、6a÷2a=3,选项错误;
C、,选项错误;
D、,选项正确;
故选:D.
【点睛】题目主要考查单项式的减法、除法及同底数幂的除法、积的乘方运算,熟练掌握各个运算法则是解题关键.
4.B
【分析】俯视图是从物体上面看所得到的图形,据此判断得出物体的俯视图.
【详解】解:A、圆锥体的俯视图是圆,故此选项不合题意;
B、三棱柱的俯视图是三角形,故此选项符合题意;
C、球的俯视图是圆,故此选项不合题意;
D、圆柱体的俯视图是圆,故此选项不合题意;
故选:B.
【点睛】本题考查了几何体的三视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.
5.A
【分析】根据对顶角相等可得.
【详解】解:∵,与是对顶角,
∴.
故选:A.
【点睛】本题考查了对顶角,解题的关键是熟练掌握对顶角的性质:对顶角相等.
6.D
【分析】分别求出平均数、中位数、方差、众数后,进行判断即可.
【详解】解:A.六位同学的年龄的平均数为,故选项错误,不符合题意;
B.六位同学的年龄按照从小到大排列为:13、14、14、14、15、15,
∴中位数为,故选项错误,不符合题意;
C.六位同学的年龄的方差为,故选项错误,不符合题意;
D.六位同学的年龄中出现次数最多的是14,共出现3次,故众数为14,故选项正确,符合题意.
故选:D.
【点睛】此题考查了平均数、中位数、方差、众数,熟练掌握平均数、中位数、方差、众数的求法是解题的关键.
7.A
【分析】根据“5头牛、2只羊共19两银子;2头牛、3只羊共12两银子”,得到两个等量关系,即可列出方程组.
【详解】解:设1头牛两银子,1只羊两银子,
由题意可得:,
故选:A.
【点睛】本题考查由实际问题抽象初二元一次方程组,解答本题的关键是明确题意,列出相应的方程组.
8.B
【分析】根据菱形的中心对称性,A、C坐标关于原点对称,利用横反纵也反的口诀求解即可.
【详解】∵菱形是中心对称图形,且对称中心为原点,
∴A、C坐标关于原点对称,
∴C的坐标为,
故选C.
【点睛】本题考查了菱形的中心对称性质,原点对称,熟练掌握菱形的性质,关于原点对称点的坐标特点是解题的关键.
9.A
【分析】根据角平分线的性质得到CD=DF=3,故B正确;根据平行线的性质及角平分线得到AE=DE=5,故C正确;由此判断D正确;再证明△BDF∽△DEC,求出BF,故A错误.
【详解】解:在中,的平分线交于点D,,
∴CD=DF=3,故B正确;
∵DE=5,
∴CE=4,
∵DE//AB,
∴∠ADE=∠DAF,
∵∠CAD=∠BAD,
∴∠CAD=∠ADE,
∴AE=DE=5,故C正确;
∴AC=AE+CE=9,故D正确;
∵∠B=∠CDE,∠BFD=∠C=90°,
∴△BDF∽△DEC,
∴,
∴,故A错误;
故选:A.
【点睛】此题考查了角平分线的性质定理,平行线的性质,等边对等角证明角相等,相似三角形的判定及性质,熟记各知识点并综合应用是解题的关键.
10.A
【分析】先根据根的判别式的意义得到,再根据根与系数的关系得到,,接着利用得到,所以,然后解关于的方程,从而得到满足条件的的值.
【详解】解:根据题意得,
解得,
∵方程的两实数根为,,
∴,,
∵,
∴,
即,
整理得,
解得,,
∵,
∴.
故选:A.
【点睛】本题考查了根与系数的关系:若,,是一元二次方程的两根,则,.也考查了根的判别式.
11.A
【分析】连接OT,根据切线的性质求出求,结合利用含 的直角三角形的性质求出OT,再利用勾股定理求得PT的长度即可.
【详解】解:连接OT,如下图.
∵与⊙相切于点,
∴ .
∵,,
∴,
∴.
故选:A.
【点睛】本题考查了切线的性质,含的直角三角形的性质,勾股定理,求出OT的长度是解答关键.
12.B
【分析】在AD上截取连接GE,延长BA至H,使连接EN,可得出,进而推出得出
,设则用勾股定理求出由可列方程解出x,即CN的长,由正切函数,求出BM的长,由即可得出结果.
【详解】解:如图所示:在AD上截取连接GE,延长BA至H,使连接EN,
为正方形外角的平分线,
在和中,
在和中,
在和中,
设则
在中,
故选:B.
【点睛】本题考查了正方形的性质,全等三角形的判定与性质,锐角三角函数,勾股定理等知识.此题综合性很强,图形比较复杂,解题的关键是注意数形结合思想的应用与辅助线的准确选择.
13.a(b+1)(b﹣1)
【详解】解:原式==a(b+1)(b﹣1),
故答案为a(b+1)(b﹣1).
14.
【分析】根据幂的乘方可直接进行求解.
【详解】解:;
故答案为.
【点睛】本题主要考查幂的乘方,熟练掌握幂的乘方是解题的关键.
15./50度
【分析】根据作图可知,,根据直角三角形两个锐角互余,可得,根据即可求解.
【详解】解:∵在中,,,
∴,
由作图可知是的垂直平分线,
,
,
,
故答案为:.
【点睛】本题考查了基本作图,垂直平分线的性质,等边对等角,直角三角形的两锐角互余,根据题意分析得出是的垂直平分线,是解题的关键.
16.
【分析】根据位似图形的性质,得到,根据得到相似比为,再结合三角形的周长比等于相似比即可得到结论.
【详解】解:和是以点为位似中心的位似图形,
,
,
,
,
根据与的周长比等于相似比可得,
故答案为:.
【点睛】本题考查相似图形的性质,掌握位似图形与相似图形的关系,熟记相似图形的性质是解决问题的关键.
17.52
【分析】根据菱形的性质可得、,由勾股定理即可求得的长,最后求出菱形的周长即可.
【详解】解:∵菱形中,,
∴,
在中, ,
∴菱形的周长=.
故答案是:52.
【点睛】本题主要考查了菱形的性质、勾股定理等知识,掌握菱形的对角线相互垂直平分是解答本题的关键.
18.或/或
【分析】根据题意,画出图象,可得当x=2时,y≥1,当x=-2时,y≥3,即可求解.
【详解】解:如图,
观察图象得:当x=2时,y≥1,
即,解得:,
当x=-2时,y≥3,
即,解得:,
∴的取值范围是或.
故答案为:或
【点睛】本题主要考查了一次函数的图象和性质,利用数形结合思想解答是解题的关键.
19.3
【分析】根据特殊角三角函数值、二次根式的性质、负整数指数幂求解即可.
【详解】解:原式.
【点睛】本题主要考查了特殊角三角函数值、负整数指数幂、二次根式的性质等知识,熟知相关计算法则是解题的关键.
20.
【分析】利用因式分解法解一元二次方程即可得.
【详解】解:,
,
或,
或,
故方程的解为.
【点睛】本题考查了解一元二次方程,熟练掌握解一元二次方程的常用方法(配方法、因式分解法、公式法、换元法等)是解题关键.
21.,当时,式子的值为;当时,式子的值为.
【分析】先计算括号内的分式加法,再计算分式的乘法,然后根据分式有意义的条件确定的值,代入计算即可得.
【详解】解:原式
,
,
,
又为满足的整数,
或,
当时,原式,
当时,原式,
综上,当时,式子的值为;当时,式子的值为.
【点睛】本题考查了分式的化简求值,熟练掌握分式的运算法则是解题关键.
22.证明过程见详解
【分析】运行平行线的性质可证∠A=∠EBC,∠DBA=∠C,结论即可得证.
【详解】证明∵B是AC中点,
∴AB=BC,
∵,
∴∠A=∠EBC,
∵,
∴∠DBA=∠C,
在△ABD和△BCE中,
,
∴△ABD≌△BCE(ASA).
【点睛】本题考查了全等三角形的判定、平行线的性质,掌握两直线平行同位角相等的知识是解答本题的关键.
23.米
【分析】过点作于点,在和中,分别解直角三角形求出的长,由此即可得.
【详解】解:如图,过点作于点,
由题意得:米,,
,
,
在中,米,米,
在中,米,米,
则(米),
答:压折前该输电铁塔的高度为米.
【点睛】本题考查了解直角三角形的应用,熟练掌握解直角三角形的方法是解题关键.
24.(1)直线AB:;反比例函数:;(2),
【分析】(1)分别设出对应解析式,利用待定系数法求解即可;
(2)先求出C点坐标,从而求出直线CD的解析式,然后求出E点坐标,再利用割补法求解面积即可.
【详解】(1)设直线AB的解析式为,
将点,代入解析式得:
,解得:,
∴直线AB的解析式为:;
设反比例函数解析式为:,
将代入解析式得:,
∴反比例函数的解析式为:;
(2)联立,解得:或,
∴C点坐标为:,
设直线CD的解析式为:,
将,代入得:
,解得:,
∴直线CD的解析式为:,
联立,解得:或,
∴E点的坐标为:;
如图,过E点作EF∥y轴,交直线AB于F点,
则F点坐标为,,
∴.
【点睛】本题考查一次函数与反比例函数综合问题,准确求出各直线的解析式以及与双曲线的交点坐标,灵活运用割补法求解面积是解题关键.
25.(1)见解析;
(2)3
【分析】(1)连接OC,根据圆周角定理得到∠ACB=90°,根据OA=OC推出∠BCD=∠ACO,即可得到∠BCD+∠OCB=90°,由此得到结论;
(2)过点O作OF⊥BC于F,设BC=4x,则AB=5x,OA=CE=2.5x,BE=1.5x,勾股定理求出AC,根据OF∥AC,得到,证得OF为△ABC的中位线,求出OF及EF,即可求出的值.
【详解】(1)证明:连接OC,
∵为的直径,
∴∠ACB=90°,
∴∠ACO+∠OCB=90°,
∵OA=OC,
∴∠A=∠ACO,
∵,
∴∠BCD=∠ACO,
∴∠BCD+∠OCB=90°,
∴OC⊥CD,
∴是的切线.
(2)解:过点O作OF⊥BC于F,
∵,
∴设BC=4x,则AB=5x,OA=CE=2.5x,
∴BE=BC-CE=1.5x,
∵∠C=90°,
∴AC=,
∵OA=OB,OF∥AC,
∴,
∴CF=BF=2x,EF=CE-CF=0.5x,
∴OF为△ABC的中位线,
∴OF=,
∴=.
【点睛】此题考查了圆周角定理,证明直线是圆的切线,锐角三角函数,三角形中位线的判定与性质,平行线分线段成比例,正确引出辅助线是解题的关键.
26.(1),
(2)
(3)存在这样的点,点的坐标为或
【分析】(1)将点的坐标代入抛物线可得到关于的方程组,解方程组即可得;
(2)设直线的解析式为,从而可得点的坐标为,利用三角形的面积公式可得的面积为,再利用待定系数法求出直线的解析式,与直线的解析式联立可得点的坐标,从而可得的面积,然后根据与的面积相等建立方程,解方程可得的值,由此即可得出答案;
(3)先求出抛物线与轴的另一个交点坐标为,从而可设点的坐标为,点的坐标为,再分①以为一边的矩形是矩形和②以为一边的矩形是矩形两种情况,利用相似三角形的性质和矩形的性质将用表示出来,然后将点代入抛物线的解析式可求出的值,由此即可得出答案.
【详解】(1)解:∵抛物线经过,两点,
∴,
解得.
(2)解:由题意,设直线的解析式为,
当时,,即,,
则的面积为,
设直线的解析式为,
将点,代入得:,解得,
则直线的解析式为,
联立,解得,
则点的坐标为,
所以的面积为,
因为与的面积相等,
所以,
解得或(不符题意,舍去),
经检验,是所列分式方程的解,
所以直线的解析式为.
(3)解:抛物线的对称轴为直线,
则抛物线与轴的另一个交点坐标为,即为,
,
,
设点的坐标为,点的坐标为,
由题意,分以下两种情况:
①如图,当以为一边的矩形是矩形时,
则,,
,
,
,
在和中,,
,
,即,
解得,
,
矩形的对角线互相平分,
,解得,
将点代入得:,
解得或,
当时,,符合题意,
当时,,不符题意,舍去,
则此时点的坐标为,
②如图,当以为一边的矩形是矩形时,过点作于点,
则,
同理可证:,
,即,
解得,
,
,
矩形的对角线互相平分,
,解得,
将点代入得:,
解得或(不符题意,舍去),
当时,,符合题意,
则此时点的坐标为,
综上,存在这样的点,点的坐标为或.
【点睛】本题考查了二次函数的几何应用、相似三角形的判定与性质、矩形的性质、一元二次方程的应用等知识点,较难的是题(3),正确分两种情况讨论,并找出相似三角形是解题关键.
相关试卷
这是一份四川省达州市宣汉县土黄中学2023-2024学年八年级(上)期末数学试题(含解析),共19页。试卷主要包含了选择题,四象限内,则m的值是,解答题等内容,欢迎下载使用。
这是一份2023年四川省达州市宣汉县中考数学一模试卷(含答案),共22页。试卷主要包含了选择题,羊二,直金十九两;牛二,填空题,计算题,解答题等内容,欢迎下载使用。
这是一份2023年四川省达州市宣汉县中考数学一模试卷(含解析),共21页。试卷主要包含了选择题,羊二,直金十九两;牛二,填空题,计算题,解答题等内容,欢迎下载使用。