2023年辽宁省阜新市新邱区中考一模数学试题(含解析)
展开2023年辽宁省阜新市新邱区中考一模数学试题
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.在,0,,2这四个实数中,最大的数是( )
A.0 B. C.2 D.
2.如图是某几何体的三视图,该几何体是( )
A. B. C. D.
3.下列计算正确的是( )
A. B. C. D.
4.某校开展安全知识竞赛,进入决赛的学生有20名,他们的决赛成绩如下表所示:
决赛成绩/分
100
99
98
97
人数
3
7
6
4
则这20名学生决赛成绩的中位数和众数分别是( )
A.98,98 B.98,99 C.98.5,98 D.98.5,99
5.关于x的一元二次方程有两个实数根,则实数m的取值范围为( )
A. B. C. D.
6.下列说法正确的是( )
A.相等的角是对顶角
B.对角线相等的四边形是矩形
C.三角形的外心是它的三条角平分线的交点
D.线段垂直平分线上的点到线段两端的距离相等
7.我国元朝朱世杰所著的《算学启蒙》一书是中国较早的数学著作之一,书中记载一道问题:“良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何追及之?”题意是:快马每天走240里,慢马每天走150里,慢马先走12天,试问快马几天可以追上慢马?若设快马x天可以追上慢马,则下列方程正确的是( )
A. B.
C. D.
8.如图,⊙O是等边△ABC的外接圆,若AB=3,则⊙O的半径是( )
A. B. C. D.
9.如图,在△ABC中,AB=AC,∠A=36°,由图中的尺规作图得到的射线与AC交于点D,则以下推断错误的是( )
A. B. C. D.
10.如图,四边形是边长为的正方形,点E,点F分别为边,中点,点O为正方形的中心,连接,点P从点E出发沿运动,同时点Q从点B出发沿运动,两点运动速度均为,当点P运动到点F时,两点同时停止运动,设运动时间为,连接,的面积为,下列图像能正确反映出S与t的函数关系的是( )
A. B. C. D.
二、填空题
11.分解因式:______.
12.已知关于x、y的方程的解满足,则a的值为__________________.
13.化简:______.
14.贵阳市2021年中考物理实验操作技能测试中,要求学生两人一组合作进行,并随机抽签决定分组.有甲、乙、丙、丁四位同学参加测试,则甲、乙两位同学分到同一组的概率是___________.
15.如图,在正六边形ABCDEF中,分别以C,F为圆心,以边长为半径作弧,图中阴影部分的面积为24π,则正六边形的边长为_____.
16.如图四边形ABCD是平行四边形,CD在x轴上,点B在y轴上,反比例函数的图象经过第一象限点A,且平行四边形ABCD的面积为6,则______.
17.如图,在平面直角坐标系中,点A的坐标是,将线段向右平移4个单位长度,得到线段,点A的对应点C的坐标是_______.
18.如图,将矩形纸片ABCD折叠,折痕为MN,点M,N分别在边AD,BC上,点C,D的对应点分别在E,F且点F在矩形内部,MF的延长线交BC与点G,EF交边BC于点H.,,当点H为GN三等分点时,MD的长为______.
三、解答题
19.计算:.
20.2022年3月22日至28日是第三十五届“中国水周”,在此期间,某校举行了主题“为推进地下水超采综合治理,复苏河湖生态环境”的水资源保护知识竞赛.为了了解本次知识竞赛成绩的分布情况,从参赛学生中随机抽取了150名学生的初赛成绩进行统计,得到如下两幅不完整的统计图表.
成绩x/分
频数
频率
15
0.1
a
0.2
45
b
60
c
(1)表中___________,___________,___________;
(2)请补全频数分布直方图:
(3)若某班恰有3名女生和1名男生的初赛成绩均为99分,从这4名学生中随机选取2名学生参加复赛,请用列表法或画树状图法求选出的2名学生恰好为一名男生、一名女生的概率.
21.如图,四边形是菱形,点E,F分别在上,.求证.
22.已知关于x的一元二次方程有,两实数根.
(1)若,求及的值;
(2)是否存在实数,满足?若存在,求出求实数的值;若不存在,请说明理由.
23.在全民健身运动中,骑行运动颇受市民青睐.一市民骑自行车由地出发,途经地去往地,如图.当他由地出发时,发现他的北偏东方向有一信号发射塔.他由地沿正东方向骑行km到达地,此时发现信号塔在他的北偏东方向,然后他由地沿北偏东方向骑行12km到达地.
(1)求地与信号发射塔之间的距离;
(2)求地与信号发射塔之间的距离.(计算结果保留根号)
24.问题提出
如图(1),在△ABC和△DEC中,∠ACB=∠DCE=90°,BC=AC,EC=DC,点E在△ABC内部,直线AD与BE交于点F.线段AF,BF,CF之间存在怎样的数量关系?
问题探究
(1)先将问题特殊化如图(2),当点D,F重合时,直接写出一个等式,表示AF,BF,CF之间的数量关系;
(2)再探究一般情形如图(1),当点D,F不重合时,证明(1)中的结论仍然成立.
问题拓展
(3)如图(3),在△ABC和△DEC中,∠ACB=∠DCE=90°,BC=kAC,EC=kDC(k是常数),点E在△ABC内部,直线AD与BE交于点F.直接写出一个等式,表示线段AF,BF,CF之间的数量关系.
25.是的直径,C是上一点,,垂足为D,过点A作的切线,与的延长线相交于点E.
(1)如图1,求证;
(2)如图2,连接,若的半径为2,,求的长.
26.图,抛物线与轴交于A、B(3,0)两点,与轴交于点C(0,-3),抛物线的顶点为D.
(1)求抛物线的解析式;
(2)点P在抛物线的对称轴上,点Q在轴上,若以点P、Q、B、C为顶点,BC为边的四边形为平行四边形,请直接写出点P、Q的坐标;
(3)已知点M是轴上的动点,过点M作的垂线交抛物线于点G,是否存在这样的点M,使得以点A、M、G为顶点的三角形与△BCD相似,若存在,请求出点M的坐标;若不存在,请说明理由.
参考答案:
1.C
【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.
【详解】解:∵2>>0>-1,
∴在,0,-1,2这四个实数中,最大的数是2.
故选:C.
【点睛】此题主要考查了实数大小比较的方法,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.
2.C
【分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.
【详解】解:主视图和左视图都是等腰三角形,那么此几何体为锥体,由俯视图为圆,可得此几何体是圆锥.
故选:C.
【点睛】本题考查了由三视图判断几何体,主视图和左视图的大致轮廓为三角形的几何体为锥体.
3.B
【分析】根据同底数幂的除法法则,幂的乘方法则,合并同类项法则逐项计算即可判断.
【详解】A.,故选项A错误,不合题意;
B.,故选项B正确,符合题意;
C.,故选项C错误,不合题意;
D.,故选项D错误,不合题意.
故选:B
【点睛】本题考查了同底数幂的除法,幂的乘方,合并同类项,熟练掌握各个运算法则是解本题的关键.
4.D
【分析】根据众数,中位数的定义计算选择即可.
【详解】∵99出现的次数最多,7次,
∴众数为99;
∵中位数是第10个,11个数据的平均数即,
故选D.
【点睛】本题考查了中位数将一组数据按大小依次排列,把处在最中间位置的一个数(或最中间位置的两个数的平均数),众数在一组数据中出现次数最多的数据,熟练掌握定义是解题的关键.
5.D
【分析】由关于x的一元二次方程有两个实数根,可得,求解即可.
【详解】关于x的一元二次方程有两个实数根,
,
解得,
故选:D.
【点睛】本题考查了一元二次方程根的判别式,即一元二次方程的根与有如下关系:当时,方程有两个不相等的实数根;当时,方程有两个相等的实数根;当时,方程没有实数根.
6.D
【分析】根据对顶角的概念、矩形的判定、三角形外心的定义和垂直平分线的性质逐项判定即可得出结论.
【详解】解:A、根据对顶角的概念可知,相等的角不一定是对顶角,故该选项不符合题意;
B、根据矩形的判定“对角线相等的平行四边形是矩形”可知该选项不符合题意;
C、根据三角形外心的定义,外心是三角形外接圆圆心,是三角形三条边中垂线的交点,故该选项不符合题意;
D、根据线段垂直平分线的性质可知该选项符合题意;
故选:D.
【点睛】本题考查基本几何概念、图形判定及性质,涉及到对顶角的概念、矩形的判定、三角形外心的定义和垂直平分线的性质等知识点,熟练掌握相关几何图形的定义、判定及性质是解决问题的关键.
7.D
【分析】设快马x天可以追上慢马,根据路程=速度×时间,即可得出关于x的一元一次方程,此题得解.
【详解】解:设快马x天可以追上慢马,
依题意,得: 240x-150x=150×12.
故选:D.
【点睛】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.
8.C
【分析】作直径AD,连接CD,如图,利用等边三角形的性质得到∠B=60°,关键圆周角定理得到∠ACD=90°,∠D=∠B=60°,然后利用含30度的直角三角形三边的关系求解.
【详解】解:作直径AD,连接CD,如图,
∵△ABC为等边三角形,
∴∠B=60°,
∵AD为直径,
∴∠ACD=90°,
∵∠D=∠B=60°,则∠DAC=30°,
∴CD=AD,
∵AD2=CD2+AC2,即AD2=(AD)2+32,
∴AD=2,
∴OA=OB=AD=.
故选:C.
【点睛】本题考查了三角形的外接圆与外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.也考查了等边三角形的性质、圆周角定理和含30度的直角三角形三边的关系.
9.D
【分析】根据作图过程可得BD平分∠ABC,然后根据等腰三角形的性质即可解决问题.
【详解】解:∵AB=AC,∠A=36°,
∴∠ABC=∠ACB=(180°-36°)=72°,
根据作图过程可知:BD平分∠ABC,
∴∠ABD=∠DBC=∠ABC=36°,
∴∠BDC=180°-36°-72°=72°,∠ADB=∠DBC+∠ACB=36°+72°=108°,故选项C成立;
∵∠BDC=∠ACB=72°,
∴BD=BC,故选项A成立;
∵∠ABD=∠A=36°,
∴AD=BD,故选项B成立;
没有条件能证明CD=AD,故选项D不成立;
故选:D.
【点睛】本题考查了作图-基本作图,等腰三角形的判定和性质,解决本题的关键是掌握基本作图方法.
10.D
【分析】分0≤t≤1和1<t≤2两种情形,确定解析式,判断即可.
【详解】当0≤t≤1时,∵正方形ABCD 的边长为2,点O为正方形的中心,
∴直线EO垂直BC,
∴点P到直线BC的距离为2-t,BQ=t,
∴S=;
当1<t≤2时,∵正方形ABCD 的边长为2,点F分别为边,中点,点O为正方形的中心,
∴直线OF∥BC,
∴点P到直线BC的距离为1,BQ=t,
∴S=;
故选D.
【点睛】本题考查了正方形的性质,二次函数的解析式,一次函数解析式,正确确定面积,从而确定解析式是解题的关键.
11.
【分析】先提取公因式,然后再利用完全平方公式进行因式分解即可.
【详解】解:
=
;
故答案为:.
【点睛】本题主要考查因式分解,熟练掌握因式分解是解题的关键.
12.5
【分析】①+②可得x+y=2-a,然后列出关于a的方程求解即可.
【详解】解:,
①+②,得
3x+3y=6-3a,
∴x+y=2-a,
∵,
∴2-a=-3,
∴a=5.
故答案为:5.
【点睛】本题考查了二元一次方程组的特殊解法,在求二元一次方程组中两个未知数的和或差的时候,有时可以采用把两个方程直接相加或相减的方法,而不必求出两个未知数的具体值.
13./
【分析】根据分式的混合运算可直接进行求解.
【详解】解:原式=;
故答案为.
【点睛】本题主要考查分式的运算,熟练掌握分式的加减乘除运算是解题的关键.
14.
【分析】画树状图,共有12种等可能的结果,甲、乙两位同学分到同一组的结果有2种,再由概率公式求解即可.
【详解】解:画树状图如图:
共有12种等可能的结果,甲、乙两位同学分到同一组的结果有4种,
∴甲、乙两位同学分到同一组的概率为,
故答案为:.
【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.
15.6
【分析】根据多边形的内角和公式求出扇形的圆心角,然后按扇形面积公式列方程求解计算即可.
【详解】解:∵正六边形的内角是120度,阴影部分的面积为24π,
设正六边形的边长为r,
∴,
解得r=6.(负根舍去)
则正六边形的边长为6.
故答案为:
【点睛】本题考查的是正多边形与圆,扇形面积,掌握以上知识是解题的关键.
16.6
【分析】过点A作AE⊥CD于点E,然后平行四边形的性质可知△AED≌△BOC,进而可得矩形ABOE的面积与平行四边形ABCD的面积相等,最后根据反比例函数k的几何意义可求解.
【详解】解:过点A作AE⊥CD于点E,如图所示:
∴,
∵四边形ABCD是平行四边形,
∴,
∴,
∴△AED≌△BOC(AAS),
∵平行四边形ABCD的面积为6,
∴,
∴;
故答案为6.
【点睛】本题主要考查平行四边形的性质及反比例函数k的几何意义,熟练掌握平行四边形的性质及反比例函数k的几何意义是解题的关键.
17.
【分析】由将线段向右平移4个单位长度,可得点A向右边平移了4个单位与C对应,再利用“右移加”即可得到答案.
【详解】解:∵将线段向右平移4个单位长度,
∴点A向右边平移了4个单位与C对应,
∴ 即
故答案为:
【点睛】本题考查的是平移的坐标变化规律,熟记“右移加,左移减,上移加,下移减”是解本题的关键.
18.或4
【分析】由折叠得,∠DMN=∠GMN,EF=CD==4,CN=EN=2,∠EFM=∠D=90°,证明得,再分两种情况讨论求解即可.
【详解】解:∵四边形ABCD是矩形,
∴AD//BC,CD=AB=4,∠D=∠C=90°,
∴∠DMN=∠GNM,
由折叠得,∠DMN=∠GMN,EF=CD==4,CN=EN=2,∠EFM=∠D=90°,
∴∠GMN=∠GNM,∠GFH=∠NEH,
∴GM=GN,
又∠GHE=∠NHE,
∴,
∴,
∵点H是GN的三等分点,则有两种情况:
①若时,则有:
∴EH=,GF=2NE=4,
由勾股定理得,,
∴GH=2NH=
∴GM=GN=GH+NH=,
∴MD=MF=GM-GF=;
②若时,则有:
∴EH=,GF=NE=1,
由勾股定理得,,
∴GH=NH=
∴GM=GN=GH+NH=5;
∴MD=MF=GM-GF=
综上,MD的值为或4.
【点睛】本题主要考查了矩形的性质,折叠的性质,等腰三角形的判定与性质以及相似三角形的判定与性质等知识,进行分类讨论是解答本题的关键.
19.
【分析】根据二次根式的性质,特殊角的三角函数值,负整数指数幂,化简绝对值进行计算即可求解.
【详解】解:原式=
.
【点睛】本题考查了实数的混合运算,掌握二次根式的性质,特殊角的三角函数值,负整数指数幂,化简绝对值是解题的关键.
20.(1)30,0.3,0.4
(2)见解析
(3)选出的2名学生恰好为一名男生、一名女生的概率为
【分析】(1)由总人数减去已知的频数即可求出a的值,再根据频率等于频数除以总数可得b、c的值;
(2)根据a的值补全直方图即可;
(3)根据题意,列表,再根据概率公式求解即可.
【详解】(1),
,
,
故答案为:30,0.3,0.4;
(2)频数分布直方图如图所示:
(3)用分别表示3名女生,用d表示1名男生,列表如下:
A
B
C
d
A
BA
CA
dA
B
AB
CB
dB
C
AC
BC
dC
d
Ad
Bd
Cd
共有12种等可能结果,其中选出的2名学生恰好为一名男生、一名女生的结果有6种,
(选出的2名学生恰好为一名男生、一名女生),
∴选出的2名学生恰好为一名男生、一名女生的概率为.
【点睛】本题考查了统计表和频数分布直方图,涉及求频率,画频数分布直方图,用列表法或画树状图求概率,准确理解题意,熟练掌握知识点是解题的关键.
21.证明见解析
【分析】由菱形的性质得到AB=AD=BC=DC,∠B=∠D,进而推出BE=DF,根据全等三角形判定的“SAS”定理证得,由全等三角形的性质即可证出.
【详解】证明:∵四边形ABCD是菱形,
∴AB=AD=BC=DC,∠B=∠D,
∵AE=AF,
∴AB﹣AE=AD﹣AF,
∴BE=DF,
在△BCE和△DCF中,,
∴,
∴CE=CF.
【点睛】本题考查菱形的性质,全等三角形的判定与性质,解题的关键是综合运用相关知识解题.
22.(1),;(2)存在,
【分析】(1)根据题意可得△>0,再代入相应数值解不等式即可,再利用根与系数的关系求解即可;
(2)根据根与系数的关系可得关于m的方程,整理后可即可解出m的值.
【详解】解:(1)由题意:Δ=(−6)2−4×1×(2m−1)>0,
∴m<5,
将x1=1代入原方程得:m=3,
又∵x1•x2=2m−1=5,
∴x2=5,m=3;
(2)设存在实数m,满足,那么
有,
即,
整理得:,
解得或.
由(1)可知,
∴舍去,从而,
综上所述:存在符合题意.
【点睛】本题主要考查了根的判别式,以及根与系数的关系,关键是掌握一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.以及根与系数的关系:x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,,.
23.(1);(2)
【分析】(1)过点作于点,分别求出即可求出;
(2)过点作于点,解即可求出.
【详解】(1)依题意知:,,
过点作于点,
∵,
∴
∵,
∴
∵
∴
∴
(2)∵,
∴
过点作于
∵,
∴
∵
∴,
∵
∴
∴
【点睛】本题考查解直角三角形应用,勾股定理的应用,掌握锐角三角函数的定义与勾股定理性质是解题关键.
24.(1)BF﹣AFCF;(2)见解析;(3)BF﹣kAF•FC
【分析】(1)证明△ACD≌△BCE(SAS),则△CDE为等腰直角三角形,故DE=EFCF,进而求解;
(2)由(1)知,△ACD≌△BCE(SAS),再证明△BCG≌△ACF(ASA),得到△GCF为等腰直角三角形,则GFCF,即可求解;
(3)证明△BCE∽△CAD和△BGC∽△AFC,得到,则BG=kAF,GC=kFC,进而求解.
【详解】解:(1)如图(2)
∵∠ACD+∠ACE=90°,∠ACE+∠BCE=90°,
∴∠BCE=∠ACD,
∵BC=AC,EC=DC,
∴△ACD≌△BCE(SAS),
∴BE=AD,∠EBC=∠CAD,
而点D、F重合,故BE=AD=AF,
而△CDE为等腰直角三角形,
故DE=EFCF,
则BF=BD=BE+ED=AFCF;
即BF﹣AFCF;
(2)如图(1),由(1)知,△ACD≌△BCE(SAS),
∴∠CAF=∠CBE,BE=AD,
过点C作CG⊥CF交BF于点G,
∵∠ACF+∠ACG=90°,∠ACG+∠GCB=90°,
∴∠ACF=∠BCG,
∵∠CAF=∠CBE,BC=AC,
∴△BCG≌△ACF(ASA),
∴GC=FC,BG=AF,
故△GCF为等腰直角三角形,则GFCF,
则BF=BG+GF=AFCF,
即BF﹣AFCF;
(3)由(2)知,∠BCE=∠ACD,
而BC=kAC,EC=kDC,
即 ,
∴△BCE∽△ACD,
∴∠CAD=∠CBE,
过点C作CG⊥CF交BF于点G,
由(2)知,∠BCG=∠ACF,
∴△BGC∽△AFC,
∴ ,
则BG=kAF,GC=kFC,
在Rt△CGF中,GF •FC,
则BF=BG+GF=kAF•FC,
即BF﹣kAF•FC.
【点睛】本题是相似形综合题,主要考查了三角形全等和相似、勾股定理的运用等,解题的关键是综合运用三角形全等和相似及勾股定理解决问题.
25.(1)见解析
(2)
【分析】(1)证明,,即可得出;
(2)证明,求出OD,由勾股定理求出DB,由垂径定理求出BC,进而利用勾股定理求出AC,AD.
【详解】(1)解:∵ ,
∴,
∵ 是的切线,
∴,
在和中,,,
∴;
(2)解:如图,连接AC.
∵ 的半径为2,
∴,,
∵ 在和中,
,,
∴,
∴,即,
∴,
在中,由勾股定理得:,
∴.
∵ ,经过的圆心,
∴,
∴.
∵是的直径,C是上一点,
∴,
在中,由勾股定理得:,
∴.
在中,由勾股定理得:,
∴.
【点睛】本题考查切线的定义、圆周角定理、垂径定理、勾股定理、相似三角形的判定与性质等,综合性较强,熟练掌握上述知识点,通过证明求出OD的长度是解题的关键.
26.(1);(2)点或、点或点;(3)存在,M(0,0)或M(,0)或M(6,0)或M(,0)
【分析】(1)根据二次函数表达式和已知坐标点代入计算即可,
(2)以点P、Q、B、C为顶点,BC为边的四边形为平行四边形,分为两种情况:或,根据平行四边形对边相等且平行求解即可,
(3)先根据题意求出A点坐标和顶点坐标,根据B,C,D坐标点得知△BDC是直角三角形,且∠BCD=,设点M得坐标(),则点G得坐标为,根据相似的性质分情况求解即可.
【详解】:(1)将点B(3,0),C(0,-3)分别代入中,
得:,
解得,
∴抛物线得函数关系为
(2)点或、点或点.
如图:
∵以点P、Q、B、C为顶点,BC为边的四边形为平行四边形,
∴或,
∵点B(3,0),C(0,-3),
当时,则,
设对称轴与x轴交于点M,
∴,,
∴;
同理时,;
故答案为:;.
(3)当时,,
解得:,
∴A(-1,0)
又,
∴抛物线得顶点D得坐标为(1,-4)
∵C(0,-3)、B(3,0)、D(1,-4)
∴,
∴
∴△BDC是直角三角形,且∠BCD=
设点M得坐标(),则点G得坐标为,
根据题意知:
∠AMG=∠BCD=
∴要使以A、M、G为顶点得三角形与△BCD相似,需要满足条件:
①当时,此时有:或
解得:或=0,,都不符合,所以时无解.
②当时,此时有:或
解得:(不符合要求,舍去)或=0,(不符合要求,舍去),所以M()或M(0,0)
③当m>3时,此时有:或
解得:(不符合要求,舍去)或(不符要求,舍去)
所以点M(6,0)或M(,0)
答:存在点M,使得A、M、G为顶点得三角形与△BCD相似,点M得坐标为:M(0,0)或M(,0)或M(6,0)或M(,0).
【点睛】此题考查二次函数相关知识,综合性较强,涵盖平行四边形性质和三角形相似及勾股定理,有一定难度.
2023年辽宁省阜新市太平区中考数学二模试卷(含解析): 这是一份2023年辽宁省阜新市太平区中考数学二模试卷(含解析),共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
初中数学北京课改版七年级下册7.2 实验课后练习题: 这是一份初中数学北京课改版七年级下册7.2 实验课后练习题,共30页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
2023年辽宁省阜新市新邱区中考数学一模试卷(含答案): 这是一份2023年辽宁省阜新市新邱区中考数学一模试卷(含答案),共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。