(新高考)高考数学一轮复习过关练考点09 导数的综合应用(含解析)
展开考点09 导数的综合应用
考纲要求
1、 运用导数研究函数的零点问题
2、 运用导数研究函数的恒成立问题
3、 运用导数研究实际应用题
4、 运用导数研究定义型问题
近三年高考情况分析
近几年各地对导数的考查逐步增加,选择、填空以及大题均有考查,难度也逐步增加,对于压轴题重点考查1、通过导数研究函数的零点、恒成立问题等问题。
2、利用导数研究函数的最值是函数模型的一个重要模块,导数是求函数的一种重要工具,对函数的解析式没有特殊的要求,无论解析式是复杂或者简单,与三角函数还是与其他模块的结合都可以运用导数求解,常考的知识点可以与立体几何、三角函数、解析几何等模块结合,这是近几年江苏高考命题的趋势
考点总结
在高考复习中要注意以下几点:
1、 注意函数零点的判断,以及函数恒成立问题的解题策略。
2、 导数的实际应用关键是构建函数模型。第一步:弄清问题,选取自变量,确立函数的取值范围;第二步:构建函数,将实际问题转化为数学问题;第三步:解决构建数学问题;第四步:将解出的结果回归实际问题,对结果进行取舍。在建立函数模型时,要注意函数的定义域,要积累常见函数模型如分式函数、三次函数、三角函数等知识点模块的结合。
三年高考真题
1、【2019年高考天津理数】已知,设函数若关于的不等式在上恒成立,则的取值范围为
A. B.
C. D.
【答案】C
【解析】当时,恒成立;
当时,恒成立,
令,
则
,
当,即时取等号,
∴,则.
当时,,即恒成立,
令,则,
当时,,函数单调递增,
当时,,函数单调递减,
则时,取得最小值,
∴,
综上可知,的取值范围是.
故选C.
2、【2019年高考浙江】已知,函数.若函数恰有3个零点,则
A.a<–1,b<0 B.a<–1,b>0
C.a>–1,b<0 D.a>–1,b>0
【答案】C
【解析】当x<0时,y=f(x)﹣ax﹣b=x﹣ax﹣b=(1﹣a)x﹣b=0,得x,
则y=f(x)﹣ax﹣b最多有一个零点;
当x≥0时,y=f(x)﹣ax﹣bx3(a+1)x2+ax﹣ax﹣bx3(a+1)x2﹣b,
,
当a+1≤0,即a≤﹣1时,y′≥0,y=f(x)﹣ax﹣b在[0,+∞)上单调递增,
则y=f(x)﹣ax﹣b最多有一个零点,不合题意;
当a+1>0,即a>﹣1时,令y′>0得x∈(a+1,+∞),此时函数单调递增,
令y′<0得x∈[0,a+1),此时函数单调递减,则函数最多有2个零点.
根据题意,函数y=f(x)﹣ax﹣b恰有3个零点⇔函数y=f(x)﹣ax﹣b在(﹣∞,0)上有一个零点,在[0,+∞)上有2个零点,
如图:
∴0且,
解得b<0,1﹣a>0,b(a+1)3,
则a>–1,b<0.
故选C.
3、【2020年江苏卷】某地准备在山谷中建一座桥梁,桥址位置的竖直截面图如图所示:谷底O在水平线MN上、桥AB与MN平行,为铅垂线(在AB上).经测量,左侧曲线AO上任一点D到MN的距离(米)与D到的距离a(米)之间满足关系式;右侧曲线BO上任一点F到MN的距离(米)与F到的距离b(米)之间满足关系式.已知点B到的距离为40米.
(1)求桥AB的长度;
(2)计划在谷底两侧建造平行于的桥墩CD和EF,且CE为80米,其中C,E在AB上(不包括端点).桥墩EF每米造价k(万元)、桥墩CD每米造价(万元)(k>0).问为多少米时,桥墩CD与EF的总造价最低?
【答案】(1)120米(2)米
【解析】(1)由题意得
米
(2)设总造价为万元,,设,
(0舍去)
当时,;当时,,因此当时,取最小值,
答:当米时,桥墩CD与EF的总造价最低.
4、【2020年江苏卷】.已知关于x的函数与在区间D上恒有.
(1)若,求h(x)的表达式;
(2)若,求k的取值范围;
(3)若求证:.
【解析】(1)由题设有对任意的恒成立.
令,则,所以.
因此即对任意的恒成立,
所以,因此.
故.
(2)令,.
又.
若,则在上递增,在上递减,则,即,不符合题意.
当时,,符合题意.
当时, 在上递减,在上递增,则,
即,符合题意.
综上所述,.
由
当,即时,在为增函数,
因为,
故存在,使,不符合题意.
当,即时,,符合题意.
当,即时,则需,解得.
综上所述,的取值范围是.
(3)因为对任意恒成立,
对任意恒成立,
等价于对任意恒成立.
故对任意恒成立
令,
当,,
此时,
当,,
但对任意的恒成立.
等价于对任意的恒成立.
的两根为,
则,
所以.
令,则.
构造函数,,
所以时,,递减,.
所以,即.
5、【2020年全国3卷】设函数,曲线在点(,f())处的切线与y轴垂直.
(1)求b.
(2)若有一个绝对值不大于1的零点,证明:所有零点的绝对值都不大于1.
【解析】(1)因为,
由题意,,即
则;
(2)由(1)可得,
,
令,得或;令,得,
所以在上单调递减,在,上单调递增,
且,
若所有零点中存在一个绝对值大于1零点,则或,
即或.
当时,,
又,
由零点存在性定理知在上存在唯一一个零点,
即在上存在唯一一个零点,在上不存在零点,
此时不存在绝对值不大于1的零点,与题设矛盾;
当时,,
又,
由零点存在性定理知在上存在唯一一个零点,
即在上存在唯一一个零点,在上不存在零点,
此时不存在绝对值不大于1的零点,与题设矛盾;
综上,所有零点的绝对值都不大于1.
6、【2020年天津卷】.已知函数,为的导函数.
(Ⅰ)当时,
(i)求曲线在点处的切线方程;
(ii)求函数的单调区间和极值;
(Ⅱ)当时,求证:对任意的,且,有.
【解析】(Ⅰ) (i) 当k=6时,,.可得,,
所以曲线在点处的切线方程为,即.
(ii) 依题意,.
从而可得,
整理可得:,
令,解得.
当x变化时,的变化情况如下表:
单调递减
极小值
单调递增
所以,函数g(x)的单调递减区间为(0,1),单调递增区间为(1,+∞);
g(x)的极小值为g(1)=1,无极大值.
(Ⅱ)证明:由,得.
对任意的,且,令,则
. ①
令.
当x>1时,,
由此可得在单调递增,所以当t>1时,,即.
因为,,,
所以
. ②
由(Ⅰ)(ii)可知,当时,,即,
故 ③
由①②③可得.
所以,当时,任意的,且,有
.
7、【2020年浙江卷】.已知,函数,其中e=2.71828…为自然对数的底数.
(Ⅰ)证明:函数在上有唯一零点;
(Ⅱ)记x0为函数在上的零点,证明:
(ⅰ);
(ⅱ).
【解析】(I)在上单调递增,
,
所以由零点存在定理得在上有唯一零点;
(II)(i),
,
令
一方面: ,
在单调递增,,
,
另一方面:,
所以当时,成立,
因此只需证明当时,
因为
当时,,当时,,
所以,
在单调递减,,,
综上,.
(ii),
,,
,因为,所以,
,
只需证明,
即只需证明,
令,
则,
,即成立,
因此.
8、【2019年高考全国Ⅰ卷理数】已知函数,为的导数.证明:
(1)在区间存在唯一极大值点;
(2)有且仅有2个零点.
【解析】(1)设,则,.
当时,单调递减,而,可得在有唯一零点,
设为.
则当时,;当时,.
所以在单调递增,在单调递减,故在存在唯一极大值点,即在存在唯一极大值点.
(2)的定义域为.
(i)当时,由(1)知,在单调递增,而,所以当时,,故在单调递减,又,从而是在的唯一零点.
(ii)当时,由(1)知,在单调递增,在单调递减,而,,所以存在,使得,且当时,;当时,.故在单调递增,在单调递减.
又,,所以当时,.从而,在没有零点.
(iii)当时,,所以在单调递减.而,,所以在有唯一零点.
(iv)当时,,所以<0,从而在没有零点.
综上,有且仅有2个零点.
9、【2019年高考全国Ⅱ卷理数】已知函数.
(1)讨论f(x)的单调性,并证明f(x)有且仅有两个零点;
(2)设x0是f(x)的一个零点,证明曲线y=lnx在点A(x0,lnx0)处的切线也是曲线的切线.
【解析】(1)f(x)的定义域为(0,1)(1,+∞).
因为,所以在(0,1),(1,+∞)单调递增.
因为f(e)=,,所以f(x)在(1,+∞)有唯一零点x1,即f(x1)=0.又,,故f(x)在(0,1)有唯一零点.
综上,f(x)有且仅有两个零点.
(2)因为,故点B(–lnx0,)在曲线y=ex上.
由题设知,即,故直线AB的斜率.
曲线y=ex在点处切线的斜率是,曲线在点处切线的斜率也是,
所以曲线在点处的切线也是曲线y=ex的切线.
10、【2019年高考天津理数】设函数为的导函数.
(Ⅰ)求的单调区间;
(Ⅱ)当时,证明;
(Ⅲ)设为函数在区间内的零点,其中,证明.
【解析】(Ⅰ)由已知,有.因此,当时,有,得,则单调递减;当时,有,得,则单调递增.
所以,的单调递增区间为的单调递减区间为.
(Ⅱ)证明:记.依题意及(Ⅰ),有,从而.当时,,故
.
因此,在区间上单调递减,进而.
所以,当时,.
(Ⅲ)证明:依题意,,即.记,则,且.
由及(Ⅰ),得.由(Ⅱ)知,当时,,所以在上为减函数,因此.又由(Ⅱ)知,,故
.
所以,.
11、【2018年高考全国Ⅰ卷理数】已知函数.
(1)讨论的单调性;
(2)若存在两个极值点,证明:.
【解析】(1)的定义域为,.
(i)若,则,当且仅当,时,所以在单调递减.
(ii)若,令得,或.
当时,;
当时,.
所以在单调递减,在单调递增.
(2)由(1)知,存在两个极值点当且仅当.
由于的两个极值点满足,所以,不妨设,则.
由于,
所以等价于.
设函数,由(1)知,在单调递减,又,从而当时,.
所以,即.
二年模拟试题
题型一、零点问题
1、(北京市昌平区2019年高三月考)已知函数是定义在上的偶函数,且满足,若函数有6个零点,则实数的取值范围是
A. B.
C. D.
【答案】C
【解析】函数有6个零点,
等价于函数与有6个交点,
当时,,
当时,,,
当时,递增,当时,递减,
的极大值为:,
作出函数的图象如下图,
与的图象有6个交点,须,表示为区间形式即.
故选C.
2、(北京市门头沟区2019年高三年级月考 )函数,函数,(其中为自然对数的底数,)若函数有两个零点,则实数取值范围为( )
A. B. C. D.
【答案】C
【解析】由得,
令,则,
所以当时,,
当时,,
因此当时,函数有两个零点,选C.
3、(2020届浙江省台州市温岭中学3月模拟)已知函数在区间上有零点,则的取值范围是( )
A. B. C. D.
【答案】B
【解析】不妨设,为函数的两个零点,其中,,
则,.
则,
由,,所以
,
可令,,
当,恒成立,所以.
则的最大值为,此时,
还应满足,显然,时,,.
故选:B.
4、(2020届山东省滨州市三校高三上学期联考)已知函数(e为自然对数的底),若且有四个零点,则实数m的取值可以为( )
A.1 B.e C.2e D.3e
【答案】CD
【解析】因为,可得,即为偶函数,
由题意可得时,有两个零点,
当时,,
即时,,
由,可得,
由相切,设切点为,
的导数为,可得切线的斜率为,
可得切线的方程为,
由切线经过点,可得,
解得:或(舍去),即有切线的斜率为,
故,
故选:CD.
5、.(2020届山东实验中学高三上期中)设定义在上的函数满足,且当时,.己知存在,且为函数(为自然对数的底数)的一个零点,则实数的取值可能是( )
A. B. C. D.
【答案】BCD
【解析】令函数,因为,
,
为奇函数,
当时,,
在上单调递减,
在上单调递减.
存在,
得,,即,
;,
为函数的一个零点;
当时,,
函数在时单调递减,
由选项知,取,
又,
要使在时有一个零点,
只需使,
解得,
的取值范围为,
故选:.
6、(2020·山东省淄博实验中学高三上期末)关于函数,下列判断正确的是( )
A.是的极大值点
B.函数有且只有1个零点
C.存在正实数,使得成立
D.对任意两个正实数,,且,若,则.
【答案】BD
【解析】A.函数的 的定义域为(0,+∞),
函数的导数f′(x),∴(0,2)上,f′(x)<0,函数单调递减,(2,+∞)上,f′(x)>0,函数单调递增,
∴x=2是f(x)的极小值点,即A错误;
B.y=f(x)﹣xlnx﹣x,∴y′10,
函数在(0,+∞)上单调递减,且f(1)﹣1ln1﹣1=1>0,f(2)﹣2ln2﹣2= ln2﹣1<0,∴函数y=f(x)﹣x有且只有1个零点,即B正确;
C.若f(x)>kx,可得k,令g(x),则g′(x),
令h(x)=﹣4+x﹣xlnx,则h′(x)=﹣lnx,
∴在x∈(0,1)上,函数h(x)单调递增,x∈(1,+∞)上函数h(x)单调递减,
∴h(x)⩽h(1)<0,∴g′(x)<0,
∴g(x)在(0,+∞)上函数单调递减,函数无最小值,
∴不存在正实数k,使得f(x)>kx恒成立,即C不正确;
D.令t∈(0,2),则2﹣t∈(0,2),2+t>2,
令g(t)=f(2+t)﹣f(2﹣t)ln(2+t)ln(2﹣t)ln,
则g′(t)0,
∴g(t)在(0,2)上单调递减,
则g(t)<g(0)=0,
令x1=2﹣t,
由f(x1)=f(x2),得x2>2+t,
则x1+x2>2﹣t+2+t=4,
当x2≥4时,x1+x2>4显然成立,
∴对任意两个正实数x1,x2,且x2>x1,若f(x1)=f(x2),则x1+x2>4,故D正确
故正确的是BD,
故选:BD.
7、(2020届浙江省嘉兴市3月模拟)已知函数,,若存在实数使在上有2个零点,则的取值范围为________.
【答案】.
【解析】
已知实数使在上有2个零点,等价于与的函数图象在上有2个交点,
显然与x轴的交点为,的图象关于对称,
当时,若要有2个交点,由数形结合知m一定小于e,即;
当时,若要有2个交点,须存在a使得在有两解,所以,
因为,即,显然存在这样的a使上述不等式成立;
由数形结合知m须大于在处的切线与x轴交点的横坐标,即
综上所述,m的范围为.
故答案为:
8、(2020届江苏省南通市海门中学高三上学期10月检测)若函数,存在零点,则实数a的取值范围为____
【答案】
【解析】因为函数,存在零点,
等价于,在上有解,
即在上有解,
即函数与在上有交点,
令
当时,,,即在上单调递增,所以;
当时,,,
令,解得,即在上单调递增,在上单调递减,所以;
故在上的值域为,
所以
故答案为:
9、(2020·山东省淄博实验中学高三上期末)已知函数.若函数在上无零点,则的最小值为________.
【答案】
【解析】
因为在区间上恒成立不可能,故要使函数在上无零点,只要对任意的,恒成立,即对任意的,恒成立.
令,,则,
再令,,则,
故在上为减函数,于是,
从而,于是在上为增函数,所以,
故要使恒成立,只要,
综上,若函数在上无零点,则的最小值为.
故答案为:
10、(2020届山东省烟台市高三上期末)已知函数,其中.
(1)求函数的单调区间;
(2)讨论函数零点的个数;
(3)若存在两个不同的零点,求证:.
【解析】(1)函数的定义域为,
,
令,得或,
因为,当或时,,单调递增;
当时,,单调递减,
所以的增区间为,;减区间为
(2)取,则当时,,,
所以;
又因为,由(1)可知在上单调递增,因此,当,恒成立,即在上无零点.;
下面讨论的情况:
①当时,因为在单调递减,单调递增,且,,,
根据零点存在定理,有两个不同的零点;
②当时,由在单调递减,单调递增,且,
此时有唯一零点;
③若,由在单调递减,单调递增,,
此时无零点;
综上,若,有两个不同的零点;若,有唯一零点;若,无零点
(3)证明:由(2)知,,且,
构造函数,,
则,
令,,
因为当时,,,
所以
又,所以恒成立,即在单调递增,
于是当时,,即 ,
因为,所,
又,所以,
因为,,且在单调递增,
所以由,可得,即
题型二 恒成立问题
1、(2020届山东省泰安市高三上期末)设函数在定义域(0,+∞)上是单调函数,,若不等式对恒成立,则实数a的取值范围是______.
【答案】
【解析】
由题意可设,则,
∵,
∴,
∴,
∴,
∴,
由得,
∴对恒成立,
令,,则,
由得,
∴在上单调递减,在单调递增,
∴,
∴,
故答案为:.
2、(2020·山东省淄博实验中学高三上期末)设函数,.
(1)若,,求函数的单调区间;
(2)若曲线在点处的切线与直线平行.
①求,的值;
②求实数的取值范围,使得对恒成立.
【解析】(1)当,时,,
则.当时,;
当时,;
所以的单调增区间为,单调减区间为.
(2)①因为,
所以,依题设有,即.
解得.
②,.
对恒成立,即对恒成立.
令,则有.
当时,当时,,
所以在上单调递增.
所以,即当时,;
当时,当时,,所以在上单调递减,故当时,,即当时,不恒成立.
综上,.
3、(2020·浙江温州中学3月高考模拟)已知.
(1)求的单调区间;
(2)当时,求证:对于,恒成立;
(3)若存在,使得当时,恒有成立,试求的取值范围.
【解析】
(1)
,
当时,.
解得.
当时,解得.
所以单调减区间为,
单调增区间为.
(2)设
,
当时,由题意,当时,
恒成立.
,
∴当时,恒成立,单调递减.
又,
∴当时,恒成立,即.
∴对于,恒成立.
(3)因为.
由(2)知,当时,恒成立,
即对于,,
不存在满足条件的;
当时,对于,,
此时.
∴,
即恒成立,不存在满足条件的;
当时,令,
可知与符号相同,
当时,,,
单调递减.
∴当时,,
即恒成立.
综上,的取值范围为.
题型三 实际应用问题
1、(2019南京、盐城一模)盐城市政府响应习总书记在十九大报告中提出的“绿水青山就是金山银山”,对环境进行了大力整治,目前盐城市的空气质量位列全国前十,吸引了大量的外地游客.某旅行社组织了一个旅游团于近期来到了黄海国家森林公园,数据显示,近期公园中每天空气质量指数近似满足函数f(x)=mlnx-x+-6(4≤x≤22,m∈R),其中x为每天的时刻,若凌晨6点时,测得空气质量指数为29.6.
(1) 求实数m的值;
(2) 求近期每天时段空气质量指数最高的时刻.(参考数值:ln6=1.8)
解析: (1)由f(6)=29.6,代入f(x)=mlnx-x+-6(4≤x≤22,m∈R),解得m=12.(5分)
(2)由已知函数求导,得f′(x)=+600=(12-x)].
令f′(x)=0,得x=12.(9分)
列表得
x
[4,12)
12
(12,22]
f′(x)
+
0
-
f(x)
极大值
所以函数在x=12时取极大值也是最大值,即每天时段空气质量指数最高的时刻为12时. (12分)
答:(1)实数m的值为12;(2)空气质量指数最高的时刻为12时.(14分)
2、(2019苏州三市、苏北四市二调)图①是一栋新农村别墅,它由上部屋顶和下部主体两部分组成.如图②,屋顶由四坡屋面构成,其中前后两坡屋面ABFE和CDEF是全等的等腰梯形,左右两坡屋面EAD和FBC是全等的三角形.点F在平面ABCD和BC上的射影分别为H,M.已知HM=5 m,BC=10 m,梯形ABFE的面积是△FBC面积的2.2倍.设∠FMH=θ.
(1) 求屋顶面积S关于θ的函数关系式;
(2) 已知上部屋顶造价与屋顶面积成正比,比例系数为k(k为正的常数),下部主体造价与其高度成正比,比例系数为16k.现欲造一栋上、下总高度为6 m的别墅,试问:当θ为何值时,总造价最低?
,②)
(1)先通过线面垂直得到FH⊥HM,放在Rt△FHM中,求出FM,根据三角形的面积公式求出△FBC的面积,根据已知条件就可以得到所求S关于θ的函数关系式.
(2)先求出主体高度,进而建立出别墅总造价y关于θ的函数关系式,再通过导数法求函数的最小值.
(1)规范解答 由题意FH⊥平面ABCD,FM⊥BC,又因为HM⊂平面ABCD,得FH⊥HM.(2分)
在Rt△FHM中,HM=5,∠FMH=θ,
所以FM=.(4分)
因此△FBC的面积为×10×=.
从而屋顶面积S=2S△FBC+2S梯形ABFE=2×+2××2.2=.
所以S关于θ的函数关系式为S=.(6分)
(2)在Rt△FHM中,FH=5tanθ,所以主体高度为h=6-5tanθ.(8分)
所以别墅总造价为y=S·k+h·16k=k-k+96k=80k·+96k.(10分)
记f(θ)=,0<θ<,所以f′(θ)=,
令f′(θ)=0,得sinθ=,又0<θ<,所以θ=.(12分)
列表:
θ
f′(θ)
-
0
+
f(θ)
所以当θ=时,f(θ)有最小值.
答:当θ为时,该别墅总造价最低.(14分)
(新高考)高考数学一轮复习过关练考点08 利用导数研究函数的性质(含解析): 这是一份(新高考)高考数学一轮复习过关练考点08 利用导数研究函数的性质(含解析),共25页。
(新高考)高考数学一轮复习过关练考点07 导数的运算及几何意义(含解析): 这是一份(新高考)高考数学一轮复习过关练考点07 导数的运算及几何意义(含解析),共16页。
高考数学一轮复习考点规范练16导数的综合应用含解析新人教A版文: 这是一份高考数学一轮复习考点规范练16导数的综合应用含解析新人教A版文,共9页。试卷主要包含了已知函数f=ex+k,k∈Z,设函数f=ex,已知函数f=ln x-x-1,已知函数f=x3-kx+k2,已知函数f=x等内容,欢迎下载使用。