所属成套资源:(新高考)高考数学一轮复习素养练习(含解析)
(新高考)高考数学一轮复习素养练习 第4章 第4讲 第2课时 高效演练分层突破 (含解析)
展开
这是一份(新高考)高考数学一轮复习素养练习 第4章 第4讲 第2课时 高效演练分层突破 (含解析),共4页。
[基础题组练]1.已知函数f(x)=x+,g(x)=2x+a,若∀x1∈,∃x2∈[2,3],使得f(x1)≥g(x2),则实数a的取值范围是( )A.a≤1 B.a≥1 C.a≤2 D.a≥2解析:选A.由题意知f(x)min≥g(x)min(x∈[2,3]),因为f(x)min=5,g(x)min=4+a,所以5≥4+a,即a≤1,故选A.2.(2020·吉林白山联考)设函数f(x)=ex-,若不等式f(x)≤0有正实数解,则实数a的最小值为________.解析:原问题等价于存在x∈(0,+∞),使得a≥ex(x2-3x+3),令g(x)=ex(x2-3x+3),x∈(0,+∞),则a≥g(x)min,而g′(x)=ex(x2-x).由g′(x)>0可得x∈(1,+∞),由g′(x)<0可得x∈(0,1).据此可知,函数g(x)在区间(0,+∞)上的最小值为g(1)=e.综上可得,实数a的最小值为e.答案:e3.(2020·西安质检)已知函数f(x)=ln x,g(x)=x-1.(1)求函数y=f(x)的图象在x=1处的切线方程;(2)若不等式f(x)≤ag(x)对任意的x∈(1,+∞)均成立,求实数a的取值范围.解:(1)因为f′(x)=,所以f′(1)=1.又f(1)=0,所以切线的方程为y-f(1)=f′(1)(x-1),即所求切线的方程为y=x-1.(2)易知对任意的x∈(1,+∞),f(x)>0,g(x)>0.①当a≥1时,f(x)≤g(x)≤ag(x);②当a≤0时,f(x)>0,ag(x)≤0,所以不满足不等式f(x)≤ag(x);③当0<a<1时,设φ(x)=f(x)-ag(x)=ln x-a(x-1),则φ′(x)=-a,令φ′(x)=0,得x=,当x变化时,φ′(x),φ(x)的变化情况下表:xφ′(x)+0-φ(x)极大值所以φ(x)max=φ>φ(1)=0,不满足不等式.综上,实数a的取值范围为[1,+∞).4.已知函数f(x)=ax-ex(a∈R),g(x)=.(1)求函数f(x)的单调区间;(2)∃x0∈(0,+∞),使不等式f(x)≤g(x)-ex成立,求a的取值范围.解:(1)因为f′(x)=a-ex,x∈R.当a≤0时,f′(x)<0,f(x)在R上单调递减;当a>0时,令f′(x)=0得x=ln a.由f′(x)>0得f(x)的单调递增区间为(-∞,ln a);由f′(x)<0得f(x)的单调递减区间为(ln a,+∞).(2)因为∃x0∈(0,+∞),使不等式f(x)≤g(x)-ex,则ax≤,即a≤.设h(x)=,则问题转化为a≤,由h′(x)=,令h′(x)=0,则x=.当x在区间(0,+∞)内变化时,h′(x),h(x)的变化情况如下表:x(0,)(,+∞)h′(x)+0-h(x)单调递增极大值单调递减由上表可知,当x=时,函数h(x)有极大值,即最大值为.所以a≤.5.(2020·重庆市七校联合考试)设函数f(x)=-,g(x)=a(x2-1)-ln x(a∈R,e为自然对数的底数).(1)证明:当x>1时,f(x)>0;(2)讨论g(x)的单调性;(3)若不等式f(x)<g(x)对x∈(1,+∞)恒成立,求实数a的取值范围.解:(1)证明:f(x)=,令s(x)=ex-1-x,则s′(x)=ex-1-1,当x>1时,s′(x)>0,所以s(x)在(1,+∞)上单调递增,又s(1)=0,所以s(x)>0,从而当x>1时,f(x)>0.(2)g′(x)=2ax-=(x>0),当a≤0时,g′(x)<0,g(x)在(0,+∞)上单调递减,当a>0时,由g′(x)=0得x= .当x∈时,g′(x)<0,g(x)单调递减,当x∈时,g′(x)>0,g(x)单调递增.(3)由(1)知,当x>1时,f(x)>0.当a≤0,x>1时,g(x)=a(x2-1)-ln x<0,故当f(x)<g(x)在区间(1,+∞)内恒成立时,必有a>0.当0<a<时, >1,g(x)在上单调递减,g<g(1)=0,而f>0,所以此时f(x)<g(x)在区间(1,+∞)内不恒成立.当a≥时,令h(x)=g(x)-f(x)(x≥1),当x>1时,h′(x)=2ax-+-e1-x>x-+-=>>0,因此,h(x)在区间(1,+∞)上单调递增,又h(1)=0,所以当x>1时,h(x)=g(x)-f(x)>0,即f(x)<g(x)恒成立.综上,a的取值范围为.6.f(x)=xex,g(x)=x2+x.(1)令F(x)=f(x)+g(x),求F(x)的最小值;(2)若任意x1,x2∈[-1,+∞),且x1>x2,有m[f(x1)-f(x2)]>g(x1)-g(x2)恒成立,求实数m的取值范围.解:(1)因为F(x)=f(x)+g(x)=xex+x2+x,所以F′(x)=(x+1)(ex+1),令F′(x)>0,解得x>-1,令F′(x)<0,解得x<-1,所以F(x)在(-∞,-1)上单调递减,在(-1,+∞)上单调递增.故F(x)min=F(-1)=--.(2)因为任意x1,x2∈[-1,+∞),且x1>x2,有m[f(x1)-f(x2)]>g(x1)-g(x2)恒成立,所以mf(x1)-g(x1)>mf(x2)-g(x2)恒成立.令h(x)=mf(x)-g(x)=mxex-x2-x,x∈[-1,+∞), 即只需证h(x)在[-1,+∞)上单调递增即可.故h′(x)=(x+1)(mex-1)≥0在[-1,+∞)上恒成立,故m≥,而≤e,故m≥e,即实数m的取值范围是[e,+∞).
相关试卷
这是一份(新高考)高考数学一轮复习素养练习 第10章 第4讲 高效演练分层突破 (含解析),共8页。
这是一份(新高考)高考数学一轮复习素养练习 第9章 第4讲 高效演练分层突破 (含解析),共7页。
这是一份(新高考)高考数学一轮复习素养练习 第6章 第4讲 高效演练分层突破 (含解析),共7页。试卷主要包含了已知a∈R,i是虚数单位等内容,欢迎下载使用。