所属成套资源:(新高考)高考数学一轮复习素养练习(含解析)
(新高考)高考数学一轮复习素养练习 第4章 第4讲 第3课时 高效演练分层突破 (含解析)
展开
这是一份(新高考)高考数学一轮复习素养练习 第4章 第4讲 第3课时 高效演练分层突破 (含解析),共4页。
[基础题组练]1.(2020·江西七校第一次联考)已知函数y=f(x)是R上的可导函数,当x≠0时,有f′(x)+>0,则函数F(x)=x·f(x)-的零点个数是( )A.0 B.1 C.2 D.3解析:选B.函数F(x)=xf(x)-的零点,就是方程xf(x)-=0的根,即方程xf(x)=的根.令函数g(x)=xf(x),则g′(x)=f(x)+xf′(x).因为当x>0时,g′(x)=f(x)+xf′(x)>0,所以g(x)=xf(x)单调递增,g(x)>g(0)=0;当x<0时,g′(x)=f(x)+xf′(x)<0,所以g(x)=xf(x)单调递减,g(x)>g(0)=0.所以函数y=g(x)与y=的图象只有一个交点,即F(x)=xf(x)-只有一个零点.故选B.2.若函数f(x)=+1(a<0)没有零点,则实数a的取值范围为________.解析:f′(x)==(a<0).当x<2时,f′(x)<0;当x>2时,f′(x)>0,所以当x=2时,f(x)有极小值f(2)=+1.若使函数f(x)没有零点,当且仅当f(2)=+1>0,解得a>-e2,因此-e2<a<0.答案:(-e2,0)3.已知函数f(x)=a+ln x(a∈R).(1)求f(x)的单调区间;(2)试判断f(x)的零点个数.解:(1)函数f(x)的定义域是(0,+∞),f′(x)=()′ln x+·=,令f′(x)>0,解得x>e-2,令f′(x)<0,解得0<x<e-2,所以f(x)在(0,e-2)上单调递减,在(e-2,+∞)上单调递增.(2)由(1)得f(x)min=f(e-2)=a-,显然a>时,f(x)>0,无零点,a=时,f(x)=0,有1个零点,a<时,f(x)<0,有2个零点.4.(2020·保定调研)已知函数f(x)=x3-x2-ax-2的图象过点A.(1)求函数f(x)的单调递增区间;(2)若函数g(x)=f(x)-2m+3有3个零点,求m的取值范围.解:(1)因为函数f(x)=x3-x2-ax-2的图象过点A,所以-4a-4a-2=,解得a=2,即f(x)=x3-x2-2x-2,所以f′(x)=x2-x-2.由f′(x)>0,得x<-1或x>2.所以函数f(x)的单调递增区间是(-∞,-1),(2,+∞).(2)由(1)知f(x)极大值=f(-1)=--+2-2=-,f(x)极小值=f(2)=-2-4-2=-,由数形结合,可知要使函数g(x)=f(x)-2m+3有三个零点,则-<2m-3<-,解得-<m<.所以m的取值范围为.5.(2019·高考全国卷Ⅱ)已知函数f(x)=(x-1)ln x-x-1.证明:(1)f(x)存在唯一的极值点;(2)f(x)=0有且仅有两个实根,且两个实根互为倒数.证明:(1)f(x)的定义域为(0,+∞).f′(x)=+ln x-1=ln x-.因为y=ln x单调递增,y=单调递减,所以f′(x)单调递增.又f′(1)=-1<0,f′(2)=ln 2-=>0,故存在唯一x0∈(1,2),使得f′(x0)=0.又当x<x0时,f′(x)<0,f(x)单调递减;当x>x0时,f′(x)>0,f(x)单调递增.因此,f(x)存在唯一的极值点.(2)由(1)知f(x0)<f(1)=-2,又f(e2)=e2-3>0,所以f(x)=0在(x0,+∞)内存在唯一根x=α.由α>x0>1得<1<x0.又f=ln --1==0,故是f(x)=0在(0,x0)的唯一根.综上,f(x)=0有且仅有两个实根,且两个实根互为倒数.6.(2020·武昌区调研考试)已知函数f(x)=aex-aex-1,g(x)=-x3-x2+6x,其中a>0.(1)若曲线y=f(x)经过坐标原点,求该曲线在原点处的切线方程;(2)若f(x)=g(x)+m在[0,+∞)上有解,求实数m的取值范围.解:(1)因为f(0)=a-1=0,所以a=1,此时f(x)=ex-ex-1.所以f′(x)=ex-e,f′(0)=1-e.所以曲线y=f(x)在原点处的切线方程为y=(1-e)x.(2)因为f(x)=aex-aex-1,所以f′(x)=aex-ae=a(ex-e).当x>1时,f′(x)>0;当0<x<1时,f′(x)<0.所以f(x)在(0,1)上单调递减,在(1,+∞)上单调递增.所以当x∈[0,+∞)时,f(x)min=f(1)=-1.令h(x)=g(x)+m=-x3-x2+6x+m,则h′(x)=-3x2-3x+6=-3(x+2)(x-1).当x>1时,h′(x)<0;当0<x<1时,h′(x)>0.所以h(x)在(0,1)上单调递增,在(1,+∞)上单调递减.所以当x∈[0,+∞)时,h(x)max=h(1)=+m.要使f(x)=g(x)+m在[0,+∞)上有解,则+m≥-1,即m≥-.所以实数m的取值范围为.
相关试卷
这是一份(新高考)高考数学一轮复习素养练习 第10章 第4讲 高效演练分层突破 (含解析),共8页。
这是一份(新高考)高考数学一轮复习素养练习 第9章 第4讲 高效演练分层突破 (含解析),共7页。
这是一份(新高考)高考数学一轮复习素养练习 第7章 第4讲 高效演练分层突破 (含解析),共6页。