(新高考)高考数学一轮复习素养练习 第8章 第3讲 高效演练分层突破 (含解析)
展开[基础题组练]
1.若直线l不平行于平面α,且l⊄α,则( )
A.α内的所有直线与l异面
B.α内不存在与l平行的直线
C.α与直线l至少有两个公共点
D.α内的直线与l都相交
解析:选B.因为l⊄α,直线l不平行于平面α,所以直线l只能与平面α相交,于是直线l与平面α只有一个公共点,所以平面α内不存在与l平行的直线.
2.(2020·大连双基测试)已知直线l,m,平面α,β,γ,则下列条件能推出l∥m的是( )
A.l⊂α,m⊂β,α∥β B.α∥β,α∩γ=l,β∩γ=m
C.l∥α,m⊂α D.l⊂α,α∩β=m
解析:选B.选项A中,直线l,m也可能异面;选项B中,根据面面平行的性质定理,可推出l∥m,B正确;选项C中,直线l,m也可能异面;选项D中,直线l,m也可能相交,故选B.
3.(2020·长沙市统一模拟考试)设a,b,c表示不同直线,α,β表示不同平面,下列命题:
①若a∥c,b∥c,则a∥b;②若a∥b,b∥α,则a∥α;③若a∥α,b∥α,则a∥b;④若a⊂α,b⊂β,α∥β,则a∥b.
真命题的个数是( )
A.1 B.2
C.3 D.4
解析:选A.由题意,对于①,根据线线平行的传递性可知①是真命题;对于②,根据a∥b,b∥α,可以推出a∥α或a⊂α,故②是假命题;对于③,根据a∥α,b∥α,可以推出a与b平行、相交或异面,故③是假命题;对于④,根据a⊂α,b⊂β.α∥β,可以推出a∥b或a与b异面,故④是假命题,所以真命题的个数是1,故选A.
4.如图所示,在空间四边形ABCD中,E,F分别为边AB,AD上的点,且AE∶EB=AF∶FD=1∶4,又H,G分别为BC,CD的中点,则( )
A.BD∥平面EFGH,且四边形EFGH 是矩形
B.EF∥平面BCD,且四边形EFGH是梯形
C.HG∥平面ABD,且四边形EFGH是菱形
D.EH∥平面ADC,且四边形EFGH是平行四边形
解析:选B.由AE∶EB=AF∶FD=1∶4知EFBD,又EF⊄平面BCD,所以EF∥平面BCD.又H,G分别为BC,CD的中点,所以HGBD,所以EF∥HG且EF≠HG.所以四边形EFGH是梯形.
5.在正方体ABCDA1B1C1D1中,E,F,G分别是A1B1,B1C1,BB1的中点,给出下列四个推断:
①FG∥平面AA1D1D;②EF∥平面BC1D1;③FG∥平面BC1D1;④平面EFG∥平面BC1D1.
其中推断正确的序号是( )
A.①③ B.①④
C.②③ D.②④
解析:选A.因为在正方体ABCDA1B1C1D1中,E,F,G分别是A1B1,B1C1,BB1的中点,所以FG∥BC1,因为BC1∥AD1,所以FG∥AD1,
因为FG⊄平面AA1D1D,AD1⊂平面AA1D1D,所以FG∥平面AA1D1D,故①正确;
因为EF∥A1C1,A1C1与平面BC1D1相交,所以EF与平面BC1D1相交,故②错误;
因为E,F,G分别是A1B1,B1C1,BB1的中点,
所以FG∥BC1,因为FG⊄平面BC1D1,BC1⊂平面BC1D1,
所以FG∥平面BC1D1,故③正确;
因为EF与平面BC1D1相交,所以平面EFG与平面BC1D1相交,故④错误.故选A.
6.如图,正方体ABCDA1B1C1D1中,AB=2,点E为AD的中点,点F在CD上.若EF∥平面AB1C,则线段EF的长等于________.
解析:因为EF∥平面AB1C,EF⊂平面ABCD,平面ABCD∩平面AB1C=AC,所以EF∥AC,所以点F为DC的中点.
故EF=AC=.
答案:
7.在下面给出的条件中,若条件足够推出a∥α,则在横线上填“OK”;若条件不能保证推出a∥α,则请在横线上补足条件:
(1)条件:a∥b,b∥c,c⊂α,______,结论:a∥α;
(2)条件:α∩β=b,a∥b,a⊂β,______,结论:a∥α.
解析:因为a∥b,b∥c,c⊂α,所以由直线与平面平行的判定定理得,当a⊄α时,a∥α.因为α∩β=b,a∥b,a⊂β,则由直线与平面平行的判定定理得a∥α.
答案:a⊄α OK
8.在四面体ABCD中,M,N分别是△ACD,△BCD的重心,则四面体的四个面中与MN平行的是________.
解析:如图,取CD的中点E,连接AE,BE,
则EM∶MA=1∶2,EN∶BN=1∶2,
所以MN∥AB.
因为AB⊂平面ABD,MN⊄平面ABD,AB⊂平面ABC,MN⊄平面ABC,
所以MN∥平面ABD,MN∥平面ABC.
答案:平面ABD与平面ABC
9.在如图所示的一块木料中,棱BC平行于平面A′B′C′D′.
(1)要经过平面A′B′C′D′内的一点P和棱BC将木料锯开,应怎样画线?
(2)所画的线与平面ABCD是什么位置关系?并证明你的结论.
解: (1)过点P作B′C′的平行线,
交A′B′,C′D′于点E,F,
连接BE,CF.
作图如右:
(2)EF∥平面ABCD.理由如下:
因为BC∥平面A′B′C′D′,
又因为平面B′C′CB∩平面A′B′C′D′=B′C′,
所以BC∥B′C′,因为EF∥B′C′,所以EF∥BC,
又因为EF⊄平面ABCD,BC⊂平面ABCD,
所以EF∥平面ABCD.
10.(2020·南昌市摸底调研)如图,在四棱锥PABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,PA=2,AB=1.设M,N分别为PD,AD的中点.
(1)求证:平面CMN∥平面PAB;
(2)求三棱锥PABM的体积.
解:(1)证明:因为M,N分别为PD,AD的中点,
所以MN∥PA,
又MN⊄平面PAB,PA⊂平面PAB,
所以MN∥平面PAB.
在Rt△ACD中,∠CAD=60°,CN=AN,
所以∠ACN=60°.
又∠BAC=60°,
所以CN∥AB.
因为CN⊄平面PAB,AB⊂平面PAB,
所以CN∥平面PAB.
又CN∩MN=N,所以平面CMN∥平面PAB.
(2)由(1)知,平面CMN∥平面PAB,
所以点M到平面PAB的距离等于点C到平面PAB的距离.
因为AB=1,∠ABC=90°,∠BAC=60°,所以BC=,
所以三棱锥PABM的体积V=VMPAB=VCPAB=VPABC=××1××2=.
[综合题组练]
1.如图,在四面体ABCD中,若截面PQMN是正方形,则在下列说法中,错误的为( )
A.AC⊥BD
B.AC=BD
C.AC∥截面PQMN
D.异面直线PM与BD所成的角为45°
解析:选B.因为截面PQMN是正方形,
所以PQ∥MN,QM∥PN,
则PQ∥平面ACD,QM∥平面BDA,
所以PQ∥AC,QM∥BD,
由PQ⊥QM可得AC⊥BD,故A正确;
由PQ∥AC可得AC∥截面PQMN,故C正确;
由BD∥PN,
所以∠MPN是异面直线PM与BD所成的角,且为45°,D正确;
由上面可知:BD∥PN,MN∥AC.
所以=,=,
而AN≠DN,PN=MN,
所以BD≠AC.B错误.故选B.
2.如图,透明塑料制成的长方体容器ABCDA1B1C1D1内灌进一些水,固定容器底面一边BC于地面上,再将容器倾斜,随着倾斜度的不同,有下面四个命题:
①没有水的部分始终呈棱柱形;②水面EFGH所在四边形的面积为定值;③棱A1D1始终与水面所在的平面平行;④当容器倾斜如图所示时,BE·BF是定值.
其中正确的个数是( )
A.1 B.2
C.3 D.4
解析:选C.由题图,显然①是正确的,②是错的;
对于③因为A1D1∥BC,BC∥FG,
所以A1D1∥FG且A1D1⊄平面EFGH,
所以A1D1∥平面EFGH(水面).
所以③是正确的;
因为水是定量的(定体积V).
所以S△BEF·BC=V,
即BE·BF·BC=V.
所以BE·BF=(定值),
即④是正确的,故选C.
3.如图,在正方体ABCDA1B1C1D1中判断下列位置关系:
(1)AD1所在的直线与平面BCC1的位置关系是______;
(2)平面A1BC1与平面ABCD的位置关系是______.
解析:(1)AD1所在直线与平面BCC1的位置关系是平行.理由:AB∥C1D1,且AB=C1D1,可得四边形ABC1D1为平行四边形,即有AD1∥BC1,AD1⊄平面BCC1,BC1⊂平面BCC1,则AD1∥平面BCC1.
(2)平面A1BC1与平面ABCD的位置关系是相交.理由:平面A1BC1与平面ABCD有一个交点B,由公理3得,如果两个平面有一个公共点,那么它们还有其他公共点,这些公共点在一条直线上,这条直线为交线.如图,过点B作AC的平行线l,即为交线.
答案:平行 相交
4.在正四棱柱ABCDA1B1C1D1中,O为底面ABCD的中心,P是DD1的中点,设Q是CC1上的点,则点Q满足条件________时,有平面D1BQ∥平面PAO.
解析:如图所示,设Q为CC1的中点,因为P为DD1的中点,所以QB∥PA.连接DB,因为P,O分别是DD1,DB的中点,所以D1B∥PO,又D1B⊄平面PAO,QB⊄平面PAO,PO⊂平面PAO,PA⊂平面PAO,所以D1B∥平面PAO,QB∥平面PAO,又D1B∩QB=B,所以平面D1BQ∥平面PAO.故Q为CC1的中点时,有平面D1BQ∥平面PAO.
答案:Q为CC1的中点
5.如图,四边形ABCD与ADEF为平行四边形,M,N,G分别是AB,AD,EF的中点.
(1)求证:BE∥平面DMF;
(2)求证:平面BDE∥平面MNG.
证明:(1)如图,连接AE,则AE必过DF与GN的交点O,连接MO,则MO为△ABE的中位线,所以BE∥MO,又BE⊄平面DMF,MO⊂平面DMF,所以BE∥平面DMF.
(2)因为N,G分别为平行四边形ADEF的边AD,EF的中点,所以DE∥GN,又DE⊄平面MNG,GN⊂平面MNG,
所以DE∥平面MNG.
又M为AB的中点,
所以MN为△ABD的中位线,
所以BD∥MN,又BD⊄平面MNG,MN⊂平面MNG,
所以BD∥平面MNG,
又DE与BD为平面BDE内的两条相交直线,所以平面BDE∥平面MNG.
6. (2020·南昌二模)如图,四棱锥PABCD中,底面ABCD是直角梯形,AB∥CD,AB⊥AD,AB=2CD=2AD=4,侧面PAB是等腰直角三角形,PA=PB,平面PAB⊥平面ABCD,点E,F分别是棱AB,PB上的点,平面CEF∥平面PAD.
(1)确定点E,F的位置,并说明理由;
(2)求三棱锥FDCE的体积.
解:(1)因为平面CEF∥平面PAD,平面CEF∩平面ABCD=CE,
平面PAD∩平面ABCD=AD,
所以CE∥AD,又AB∥DC,
所以四边形AECD是平行四边形,
所以DC=AE=AB,
即点E是AB的中点.
因为平面CEF∥平面PAD,平面CEF∩平面PAB=EF,
平面PAD∩平面PAB=PA,
所以EF∥PA,又点E是AB的中点,
所以点F是PB的中点.
综上,E,F分别是AB,PB的中点.
(2)连接PE,由题意及(1)知PA=PB,AE=EB,
所以PE⊥AB,又平面PAB⊥平面ABCD,平面PAB∩平面ABCD=AB,
所以PE⊥平面ABCD.
又AB∥CD,AB⊥AD,
所以VF-DEC=VP-DEC=S△DEC×PE=××2×2×2=.
(新高考)高考数学一轮复习素养练习 第3章 第8讲 高效演练分层突破 (含解析): 这是一份(新高考)高考数学一轮复习素养练习 第3章 第8讲 高效演练分层突破 (含解析),共6页。
(新高考)高考数学一轮复习素养练习 第3章 第6讲 高效演练分层突破 (含解析): 这是一份(新高考)高考数学一轮复习素养练习 第3章 第6讲 高效演练分层突破 (含解析),共6页。
(新高考)高考数学一轮复习素养练习 第3章 第5讲 高效演练分层突破 (含解析): 这是一份(新高考)高考数学一轮复习素养练习 第3章 第5讲 高效演练分层突破 (含解析),共6页。