(新高考)高考数学一轮复习素养练习 第10章 第4讲 高效演练分层突破 (含解析)
展开
这是一份(新高考)高考数学一轮复习素养练习 第10章 第4讲 高效演练分层突破 (含解析),共8页。
[基础题组练]1.(多选)下列4个命题错误的是( )A.对立事件一定是互斥事件B.若A,B为两个事件,则P(A+B)=P(A)+P(B)C.若事件A,B,C彼此互斥,则P(A)+P(B)+P(C)=1D.若事件A,B满足P(A)+P(B)=1,则A,B是对立事件解析:选BCD.在A中,对立事件一定是互斥事件,故A正确;在B中,若A,B为两个互斥事件,则P(A+B)=P(A)+P(B),若A,B不是互斥事件,则P(A+B)=P(A)+P(B)-P(AB),故B错误;在C中,若事件A,B,C彼此互斥,则P(A)+P(B)+P(C)≤1,故C错误;在D中,若事件A,B满足P(A)+P(B)=1,则A,B有可能不是对立事件.2.(2019·高考全国卷Ⅲ)《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著,某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为( )A.0.5 B.0.6C.0.7 D.0.8解析:选C.根据题意阅读过《红楼梦》《西游记》的人数用韦恩图表示如下:所以该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为=0.7.3.现有5人参加抽奖活动,每人依次从装有5张奖票(其中3张为中奖票)的箱子中不放回地随机抽取一张,直到3张中奖票都被抽出时活动结束,则活动恰好在第4人抽完结束的概率为( )A. B.C. D.解析:选C.将5张奖票不放回地依次取出共有A=120种不同的取法,若活动恰好在第四次抽奖结束,则前三次共抽到2张中奖票,第四次抽到最后一张中奖票,共有3AAA=36种取法,所以P==.故选C.4.(多选)某展会安排了分别标有序号为“1号”“2号”“3号”的三辆车,等可能随机顺序前往酒店接嘉宾.某嘉宾突发奇想,设计了两种乘车方案.方案一:不乘坐第一辆车,若第二辆车的车序号大于第一辆车的车序号,就乘坐此车,否则乘坐第三辆车;方案二:直接乘坐第一辆车.记方案一与方案二坐到“3号”车的概率分别为P1,P2,则( )A.P1·P2= B.P1=P2=C.P1+P2= D.P1>P2解析:选ACD.三辆车的出车顺序可能为123,132,213,231,312,321,共6种.方案一坐到“3号”车可能为132,213,231,共3种,所以P1==;方案二坐到“3号”车可能为312,321,共2种,所以P2==,所以P1>P2,P1·P2=,P1+P2=,故选ACD.5.(2020·武汉市调研测试)大学生小明与另外3名大学生一起分配到某乡镇甲、乙、丙3个村小学进行支教,若每个村小学至少分配1名大学生,则小明恰好分配到甲村小学的概率为( )A. B.C. D.解析:选C.依题意,小明与另外3名大学生分配到某乡镇甲、乙、丙3个村小学的分配方法是1个学校2人,另外2个学校各1人,共有CA=36(种)分配方法,若小明必分配到甲村小学,有CA+CA=12(种)分配方法,根据古典概型的概率计算公式得所求的概率为=,故选C.6.(2019·高考全国卷Ⅱ)我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为________.解析:经停该站高铁列车所有车次的平均正点率的估计值为=0.98.答案:0.987.连续掷3枚硬币,观察落地后这3枚硬币出现正面还是反面.“恰好3枚正面都朝上”的概率是________;“至少有2枚反面朝上”的概率是________.解析:列举基本事件如下:(正,正,正),(正,正,反),(正,反,正),(反,正,正),(正,反,反),(反,正,反),(反,反,正),(反,反,反),共8个,“恰好3枚正面都朝上”包含1个基本事件,概率P1=.“至少有2枚反面朝上”包含4个基本事件,概率P2==.答案: 8.已知|p|≤3,|q|≤3,当p,q∈Z,则方程x2+2px-q2+1=0有两个相异实数根的概率是________.解析:由方程x2+2px-q2+1=0有两个相异实数根,可得Δ=(2p)2-4(-q2+1)>0,即p2+q2>1.当p,q∈Z时,设点M(p,q),如图,直线p=-3,-2,-1,0,1,2,3和直线q=-3,-2,-1,0,1,2,3的交点,即为点M,共有49个,其中在圆上和圆内的点共有5个(图中黑点).当点M(p,q)落在圆p2+q2=1外时,方程x2+2px-q2+1=0有两个相异实数根,所以方程x2+2px-q2+1=0有两个相异实数根的概率P==.答案:9.某保险公司利用简单随机抽样方法,对投保车辆进行抽样,样本车辆中每辆车的赔付结果统计如下:赔付金额(元)01 0002 0003 0004 000车辆数(辆)500130100150120(1)若每辆车的投保金额均为2 800元,估计赔付金额大于投保金额的概率;(2)在样本车辆中,车主是新司机的占10%,在赔付金额为4 000元的样本车辆中,车主是新司机的占20%,估计在已投保车辆中,新司机获赔金额为4 000元的概率.解:(1)设A表示事件“赔付金额为3 000元”,B表示事件“赔付金额为4 000元”,以频率估计概率得P(A)==0.15,P(B)==0.12.由于投保金额为2 800元,赔付金额大于投保金额对应的情形是赔付金额为3 000元和4 000元,所以其概率为P(A)+P(B)=0.15+0.12=0.27.(2)设C表示事件“投保车辆中新司机获赔4 000元”,由已知,样本车辆中车主为新司机的有0.1×1 000=100(辆),而赔付金额为4 000元的车辆中,车主为新司机的有0.2×120=24(辆),所以样本车辆中新司机车主获赔金额为4 000元的频率为=0.24,由频率估计概率得P(C)=0.24.10.在某大型活动中,甲、乙等五名志愿者被随机地分到A,B,C,D四个不同的岗位服务,每个岗位至少有一名志愿者.(1)求甲、乙两人同时参加A岗位服务的概率;(2)求甲、乙两人不在同一个岗位服务的概率;(3)求五名志愿者中仅有一人参加A岗位服务的概率.解:(1)记“甲、乙两人同时参加A岗位服务”为事件EA,那么P(EA)==,即甲、乙两人同时参加A岗位服务的概率是.(2)记“甲、乙两人同时参加同一岗位服务”为事件E,那么P(E)==,所以甲、乙两人不在同一岗位服务的概率是P()=1-P(E)=.(3)有两人同时参加A岗位服务的概率P2==,所以仅有一人参加A岗位服务的概率P1=1-P2=.[综合题组练]1.已知甲、乙、丙各有一张自己的身份证,现把三张身份证收起来后,再随机分给甲、乙、丙每人一张,则恰有一人取到自己身份证的概率为( )A. B.C. D.解析:选A.甲、乙、丙各有一张自己的身份证,现把三张身份证收起来后,再随机分给甲、乙、丙每人一张,基本事件总数n=A=6,恰有一人取到自己身份证包含的基本事件个数m=CCC=3,所以恰有一人取到自己身份证的概率为p===.故选A.2.如图,某建筑工地搭建的脚手架局部类似于一个2×2×3的长方体框架,一个建筑工人欲从A处沿脚手架攀登至B处,则其最近的行走路线中不连续向上攀登的概率为( )A. B.C. D.解析:选B.根据题意,最近路线就是不能走回头路,不能走重复的路,所以一共要走3次向上,2次向右,2次向前,共7次,所以最近的行走路线共有A=5 040(种).因为不能连续向上,所以先把不向上的次数排列起来,也就是2次向右和2次向前全排列为A.接下来,就是把3次向上插到4次不向上之间的空隙中,5个位置排3个元素,也就是A,则最近的行走路线中不连续向上攀登的路线共有AA=1 440(种),所以其最近的行走路线中不连续向上攀登的概率P==.故选B.3.连续抛掷同一颗均匀的骰子,记第i次得到的向上一面的点数为ai,若存在正整数k,使a1+a2+…+ak=6,则称k为幸运数字,则幸运数字为3的概率是________.解析:连续抛掷同一颗均匀的骰子3次,所含基本事件总数n=6×6×6,要使a1+a2+a3=6,则a1,a2,a3可取1,2,3或1,1,4或2,2,2三种情况,其所含的基本事件个数m=A+C+1=10.故幸运数字为3的概率为P==.答案:4.如图的三行三列的方阵中有九个数aij(i=1,2,3;j=1,2,3),从中任取三个数,则至少有两个数位于同行或同列的概率为________.解析:从九个数中任取三个数的不同取法共有C==84种,取出的三个数分别位于不同的行与列的取法共有C·C·C=6种,所以至少有两个数位于同行或同列的概率为1-=.答案:5.某电子商务公司随机抽取1 000名网络购物者进行调查.这1 000名购物者2017年网上购物金额(单位:万元)均在区间[0.3,0.9]内,样本分组为:[0.3,0.4),[0.4,0.5),[0.5,0.6),[0.6,0.7),[0.7,0.8),[0.8,0.9],购物金额的频率分布直方图如下:电子商务公司决定给购物者发放优惠券,其金额(单位:元)与购物金额关系如下:购物金额分组[0.3,0.5)[0.5,0.6)[0.6,0.8)[0.8,0.9]发放金额50100150200(1)求这1 000名购物者获得优惠券金额的平均数;(2)以这1 000名购物者购物金额落在相应区间的频率作为概率,求一个购物者获得优惠券金额不少于150元的概率.解:(1)购物者的购物金额x与获得优惠券金额y的频率分布如下表:x0.3≤x<0.50.5≤x<0.60.6≤x<0.80.8≤x≤0.9y50100150200频率0.40.30.280.02这1 000名购物者获得优惠券金额的平均数为(50×400+100×300+150×280+200×20)=96.(2)由获得优惠券金额y与购物金额x的对应关系及(1)知,P(y=150)=P(0.6≤x<0.8)=0.28,P(y=200)=P(0.8≤x≤0.9)=0.02,从而,获得优惠券金额不少于150元的概率为P(y≥150)=P(y=150)+P(y=200)=0.28+0.02=0.3.6.(2020·太原一模)某快递公司收取快递费用的标准如下:质量不超过1 kg的包裹收费10元;质量超过1 kg的包裹,除1 kg收费10元之外,超过1 kg的部分,每1 kg(不足1 kg,按1 kg计算)需再收5元.该公司对近60天,每天揽件数量统计如下表:包裹件数范围0~100101~200201~300301~400401~500包裹件数(近似处理)50150250350450天数6630126(1)某人打算将A(0.3 kg),B(1.8 kg),C(1.5 kg)三件礼物随机分成两个包裹寄出,求该人支付的快递费不超过30元的概率;(2)该公司从收取的每件快递的费用中抽取5元作为前台工作人员的工资和公司利润,剩余的作为其他费用.前台工作人员每人每天揽件不超过150件,工资100元,目前前台有工作人员3人,那么公司将前台工作人员裁员1人对提高公司利润是否更有利?解:(1)由题意,寄出方式有以下三种可能:情况第一个包裹第二个包裹甲支付的总快递费礼物质量(kg)快递费(元)礼物质量(kg)快递费(元)1A0.310B,C3.325352B1.815A,C1.815303C1.515A,B2.12035所有3种可能中,有1种可能快递费未超过30元,根据古典概型概率计算公式,所求概率为.(2)由题目中的天数得出频率,如下:包裹件数范围0~100101~200201~300301~400401~500包裹件数(近似处理)50150250350450天数6630126频率0.10.10.50.20.1若不裁员,则每天可揽件的上限为450件,公司每日揽件数情况如下:包裹件数(近似处理)50150250350450实际揽件数50150250350450频率0.10.10.50.20.1平均揽件数50×0.1+150×0.1+250×0.5+350×0.2+450×0.1=260故公司每日利润为260×5-3×100=1 000(元);若裁员1人,则每天可揽件的上限为300件,公司每日揽件数情况如下:包裹件数(近似处理)50150250350450实际揽件数50150250300300频率0.10.10.50.20.1平均揽件数50×0.1+150×0.1+250×0.5+300×0.2+300×0.1=235故公司每日利润为235×5-2×100=975(元).综上,公司将前台工作人员裁员1人对提高公司利润不利.
相关试卷
这是一份(新高考)高考数学一轮复习素养练习 第9章 第4讲 高效演练分层突破 (含解析),共7页。
这是一份(新高考)高考数学一轮复习素养练习 第8章 第4讲 高效演练分层突破 (含解析),共10页。
这是一份(新高考)高考数学一轮复习素养练习 第7章 第4讲 高效演练分层突破 (含解析),共6页。