开学活动
搜索
    上传资料 赚现金

    四川省成都市第七中学2022-2023学年高一数学下学期6月月考试题(Word版附解析)

    四川省成都市第七中学2022-2023学年高一数学下学期6月月考试题(Word版附解析)第1页
    四川省成都市第七中学2022-2023学年高一数学下学期6月月考试题(Word版附解析)第2页
    四川省成都市第七中学2022-2023学年高一数学下学期6月月考试题(Word版附解析)第3页
    还剩20页未读, 继续阅读
    下载需要15学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    四川省成都市第七中学2022-2023学年高一数学下学期6月月考试题(Word版附解析)

    展开

    这是一份四川省成都市第七中学2022-2023学年高一数学下学期6月月考试题(Word版附解析),共23页。试卷主要包含了 设是复数且,则的最小值为等内容,欢迎下载使用。
    2025届高一下期6月份阶段性测试题数学选择题:本题共8个小题,每小题5分,共40.在每小题给出的选项中,只有一项是符合题目要求的.1.     A.  B.  C.  D. 【答案】D【解析】【分析】利用复数的乘法可求.【详解】故选:D. 2. 在平行四边形中,,点EBC的中点,,则    A.  B.  C. 2 D. 6【答案】D【解析】【分析】为基底表示,再根据数量积的运算公式,求得数量积.【详解】.故选:D.3. 一平面四边形OABC的直观图OABC如图所示,其中OCx轴,ABx轴,BCy轴,则四边形OABC的面积为(  )A.  B. 3 C. 3 D. 【答案】B【解析】【分析】结合图形可得,则可得四边形面积,后可得四边形OABC的面积.【详解】轴与交点为D,因OCx轴,ABx轴,则,又BCy轴,则四边形为平行四边形,故.,结合ABx轴,则,故.则四边形面积为,因四边形面积是四边形OABC的面积的倍,则四边形OABC的面积为.故选:B4. 甲、乙两个圆锥的母线长相等,侧面展开图的圆心角之和为,侧面积分别为,体积分别为.若,则    A.  B.  C.  D. 【答案】C【解析】【分析】设母线长为,甲圆锥底面半径为,乙圆锥底面圆半径为,根据圆锥的侧面积公式可得,再结合圆心角之和可将分别用表示,再利用勾股定理分别求出两圆锥的高,再根据圆锥的体积公式即可得解.【详解】解:设母线长为,甲圆锥底面半径为,乙圆锥底面圆半径为所以所以所以甲圆锥的高乙圆锥的高所以.故选:C. 5. 是复数且,则的最小值为(    A. 1 B.  C.  D. 【答案】C【解析】【分析】根据复数模的几何意义,结合图象,即可求解.【详解】根据复数模的几何意义可知,表示复平面内以为圆心,1为半径的圆,而表示复数到原点的距离,由图可知,.故选:C6. 小明在整理数据时得到了该组数据的平均数为20,方差为28,后来发现有两个数据记录有误,一个错将11记录为21,另一个错将29记录为19.在对错误的数据进行更正后,重新求得该组数据的平均数为,方差为,则(    A.  B.  C.  D. 【答案】D【解析】【分析】不妨记更正前该组数据为:,然后根据平均数和方差公式先求出,再利用公式即可求得更正后的平均数和方差.【详解】不妨记更正前该组数据为:则更正后的数据为:.由题可知,整理得.所以.故选:D7. 若方程x2 +2x+m2 +3m = mcos(x+1) + 7有且仅有1个实数根,则实数m的值为(    A. 2 B. -2 C. 4 D. -4【答案】A【解析】【分析】,由对称轴为,可得,解出,并验证即可.【详解】依题意,有且仅有1个实数根.,对称轴为.所以,解得.时,,易知是连续函数,又所以上也必有零点,此时不止有一个零点,故不合题意;时,,此时只有一个零点,故符合题意.综上,.故选:A【点睛】关键点点睛:构造函数,求出的对称轴,利用对称的性质得出.8. 已知锐角的内角ABC所对的边分别为abc,若外接圆半径为2,则的取值范围是(    A.  B.  C.  D. 【答案】C【解析】【分析】利用正弦定理求得,将转化为角的形式,结合三角函数值域的知识求得正确答案.【详解】依题意,由正弦定理得,由于所以由于,所以,所以所以是锐角,且所以.,由于三角形是锐角三角形,所以,即所以,所以所以所以的取值范围是.故选:C【点睛】关键点点睛:利用正弦定理解三角形,主要是利用正弦定理边角互化的作用来对已知条件进行化简求值.三角形中,要求一个表达式的取值范围,可利用正弦定理将其转化为角的形式,然后利用三角函数的值域的求法来求得取值范围.多选题:本题共4个小题,每小题5分,共20.在每小题给出的选项中,有多项符合题目要求.全部选对的得5,部分选对的得2分,有选错得0.9. 我们可以用统计图表表示数据,对获得数据进行统计分析.据《中国统计年鉴(2022)》可知,2016~2021年我国人口年龄分布情况(百分比)如表所示.(已知少儿抚养比,老年抚养比,总抚养比(%少儿抚养比(%+老年抚养比(%))根据图表,下列说法正确的有(    A. 2016年到2021年期间,0~14岁人口比重逐年上升B. 2016年到2021年期间,15~64岁人口比重在逐年下降C. 2021赡养老人的压力比2020年更重D. 2021年总抚养比大于2020年总抚养比【答案】BCD【解析】【分析】根据图表,逐项分析每个选项中的数据,可得答案.【详解】对于A,由图表可知2018年到2019年间以及2020年到2021年间0~14岁人口比重在降低,A错误;对于B,从2016年到2021年期间,15~64岁人口比重在逐年下降,正确;对于C202165岁以及以上老年人抚养比202065岁以及以上老年人抚养比为,故2021赡养老人的压力比2020年更重,C正确;对于D2021年总抚养比为2020年总抚养比为2021年总抚养比大于2020年总抚养比,D正确,故选:BCD10. 设函数的最小正周期为,且过点,则下列正确的有(    A. 单调递减B. 的一条对称轴为C. 的周期为D. 把函数的图象向左平移个长度单位得到函数的解析式为【答案】AB【解析】【分析】利用辅助角公式将函数化简,根据周期求出,再根据函数过点求出,即可得到函数解析式,再根据余弦函数的性质一一判断即可.【详解】根据辅助角公式得最小正周期为,即函数过点,则.即,则时,单调递减,故A正确.,则时,的一条对称轴为,故B正确.因为为偶函数,所以周期为,故C错误.函数的图象向左平移个长度单位得到函数的解析式为,故D错误.故选:AB11. 已知圆锥的顶点为P,底面圆心为OAB为底面直径,,点C在底面圆周上,且二面角45°,则(    ).A. 该圆锥的体积为 B. 该圆锥的侧面积为C.  D. 的面积为【答案】AC【解析】【分析】根据圆锥的体积、侧面积判断AB选项的正确性,利用二面角的知识判断CD选项的正确性.【详解】依题意,,所以A选项,圆锥的体积为A选项正确;B选项,圆锥的侧面积为B选项错误;C选项,设的中点,连接,所以是二面角的平面角,,所以,则C选项正确;D选项,,所以D选项错误.故选:AC.    12. 奔驰定理因其几何表示酷似奔驰的标志得来,是平面向量中一个非常优美的结论.奔驰定理与三角形四心(重心、内心、外心、垂心)有着神秘的关联.它的具体内容是:已知M内一点,的面积分别为,且.以下命题正确的有(    A. ,则的重心B. 的内心,则C. 的外心,则D. 的垂心,,则【答案】ABD【解析】【分析】A,取BC的中点D,连接MDAM,结合奔驰定理可得到,进而即可判断AB,设内切圆半径为,从而可用表示出,再结合奔驰定理即可判断BC,设的外接圆半径为,根据圆的性质结合题意可得,从而可用表示,进而即可判断CD,延长AMBC于点D,延长BOAC于点F,延长COAB于点E,根据题意结合奔驰定理可得到,从而可设,则,代入即可求解,进而即可判断D【详解】对于A,取BC的中点D,连接MDAM,则所以 所以AMD三点共线,且EF分别为ABAC的中点,同理可得所以的重心,故A正确;对于B,由的内心,则可设内切圆半径为则有所以,故B正确;对于C,由的外心,则可设的外接圆半径为则有所以所以,故C错误;对于D,如图,延长AMBC于点D,延长BMAC于点F,延长CMAB于点E的垂心,,则,则,则所以,即所以,所以,故D正确;故选:ABD【点睛】关键点点睛:解答D选项的关键是通过做辅助线(延长AMBC于点D,延长BOAC于点F,延长COAB于点E),根据题意,结合奔驰定理得到,再设,得到,进而即可求解填空题:本题共4个小题,每小题5分,共20.13. 2022816日,航天员的出舱主通道——问天实验舱气闸舱首次亮相.某高中为了解学生对这一新闻的关注度,利用分层抽样的方法从高中三个年级中抽取了36人进行问卷调查,其中高一年级抽取了15人,高二年级抽取了12人,且高三年级共有学生900人,则该高中的学生总数为_________人.【答案】【解析】【分析】根据题意求得每个学生抽到的概率,结合分层抽样列出方程,即可求解.【详解】利用分层抽样的方法从三个年级中抽取了36人进行问卷调查,其中高一、高二年级各抽取了15,12人,可得高三年级抽取了9人,又由高三年级共有900名学生,则每个学生被抽到的概率为设该校共有名学生,可得,解得(人),即该校共有名学生.故答案为:.14. 已知函数在区间有且仅有3个零点,则的取值范围是________【答案】【解析】【分析】,得3个根,从而结合余弦函数的图像性质即可得解.【详解】因为,所以,则3个根,,则3个根,其中结合余弦函数图像性质可得,故故答案为:.15. 无字证明(proof without words)是指仅用图象而无需文字解释就能不证自明的数学命题,如图是某三角恒等式的无字证明,那么该图证明的三角恒等式为__________  【答案】【解析】【分析】根据三角形的面积关系以及三角形的面积公式列式可得结果.【详解】如图,左边的三角形的面积为中间三角形的面积为,右边三角形的面积为故答案为:16. 已知三棱锥,其中平面,则三棱锥外接球的表面积为__________.【答案】【解析】【分析】根据题意设底面外心为GO为球心,所以平面ABC,根据正弦定理求得外接圆的半径,结合球的性质、球的表面积公式进行求解即可.【详解】根据题意设底面的外心为GO为球心,所以平面ABC  因为平面ABC,所以PA中点,因为,所以因为平面平面ABC,所以,因此因此四边形ODAG是平行四边形,故外接圆的半径,由正弦定理得所以该外接球的半径满足所以外接球的表面积为.故答案为:解答题:本题共6个小题,1710分,其余各题各12分,共70.解答应写出文字说明证明过程或演算步骤.17. 已知函数1,求的值;2时,求的最大值和最小值.【答案】1    2的最大值为2,最小值为1【解析】【分析】1)由整体法列式求解;2)由整体法求函数单调区间,即可判断最值.【小问1详解】,即【小问2详解】则当单调递增;当单调递减..18. 的内角ABC的对边分别为abc,分别以abc为边长的三个正三角形的面积依次为,已知1的面积;2,求b【答案】1    2【解析】【分析】1)先表示出,再由求得,结合余弦定理及平方关系求得,再由面积公式求解即可;2)由正弦定理得,即可求解.【小问1详解】由题意得,则,由余弦定理得,整理得,则,又,则【小问2详解】由正弦定理得:,则,则. 19. 2022年起,某省将实行高考模式,为让学生适应新高考的赋分模式,某校在一次阶段性测试中使用赋分制给高一年级学生的生物成绩进行赋分,具体赋分方案如下:先按照考生原始分从高到低按比例划定共五个等级,然后在相应赋分区间内利用转换公式进行赋分.等级排名占比,赋分分数区间是86100等级排名占比,赋分分数区间是7185等级排名占比,赋分分数区间是5670等级排名占比,赋分分数区间是4155等级排名占比,赋分分数区间是3040;现从该年级生物成绩中随机抽取100名学生的原始成绩(未赋分)进行分析,其频率分布直方图如图所示:  1求图中的值;2用样本估计总体的方法,估计该校高一年级本次生物测试原始成绩的众数、平均数和中位数.【答案】1    2众数75分;平均数71分;中位数.【解析】【分析】1)由各组频率之和为1列方程求解即可;2)由频率分布直方图中众数、平均数和中位数的计算公式代入即可得出答案.【小问1详解】由题意,解得【小问2详解】抽取的这100名学生的原始成绩的众数的估计值为分;抽取的这100名学生的原始成绩的平均数的估计值为:分;由频率直方图可得前三组的频率和为前四组的频率和为故中位数落在第四组,设中位数为,解得故这100名学生的原始成绩的中位数的估计值为.20. 平面PAB这两个条件中选一个,补充在下面问题中,并完成解答.如图,在四棱锥中,平面ABCD______.  1求证:四边形ABCD是直角梯形;2求直线PB与平面PCD所成角的正弦值.【答案】1证明见解析    2【解析】【分析】1)利用线面垂直的性质得,再利用勾股定理的逆定理得,最后证得,则证明四边形ABCD是直角梯形;2)将四棱锥补成一个长方体,再过BO,连接OP,利用线面垂直的判定定理得平面PFCE,则转化为求的正弦值,再分别求出的长即可.【小问1详解】选择.证明:连接AC,因为平面ABCD平面,所以.  因为,所以因为,所以所以.因为,所以,所以四边形ABCD是直角梯形.选择.证明:连接AC因为平面ABCD平面,所以.因为,所以因为,所以所以.因为平面PAB平面ABCD,平面平面所以,又,所以四边形ABCD是直角梯形.【小问2详解】选择①②相同,如图,延长CDE使DE=CD,则四边形ABCE为矩形,将四棱锥补成一个长方体连接PECF,则PB与平面PCD所成的角即PB与平面PFCE所成的角.BO,连接OP,由长方体的性质知,平面BCGF因为平面BCGF,所以,又平面PFCE所以平面PFCE,则即为直线PB与平面PCD所成的角.中,,可求得中,可求得所以.  21. 如图所示,在平行四边形ABCD中,E为边AB的中点,将沿直线DE翻折为,若F为线段的中点.在翻折过程中,1求证:平面2若二面角,求与面所成角的正弦值.【答案】1证明见解析    2【解析】【分析】1)取的中点,通过证平面平面,可得.2)利用二面角的平面角的定义先找出二面角的平面角即为,再利用面面垂直的性质定理找到平面的垂线,从而作出与面所成的角,计算可得答案.【小问1详解】证明:取的中点,连接为线段的中点,平面平面平面四边形为平行四边形,则平面平面,可得平面平面可得平面平面平面.【小问2详解】中点中点,连接为边的中点,,所以为等边三角形,从而的中点所以,又是等边三角形,所以,所以为二面角的平面角,所以过点,过交于,连接是等边三角形,所以可求得,所以所以,又所以,又,所以平面,所以面,在中易求得,又所以所以,所以与平面所成的角,中可求得,所以与面所成角的正弦值为22. 如图,AB是单位圆上的相异两定点(为圆心),),点C为单位圆上的动点,线段AC交线段于点M(点M异于点B),记的面积为1,求的表达式;2的取值范围;,记,求的最小值.【答案】1    2 【解析】【分析】1)利用三角形面积公式和数量积的定义,写出的表达式;2)由,将数量积转化为三角函数,求函数值域即可;利用向量共线将t表示,求函数的最值.【小问1详解】因为所以).【小问2详解】,则所以,所以,则,则,因为所以所以因为,所以,即化简得,所以当且仅当,即时,等号成立,的最小值为【点睛】因为MC三点共线,所以表示向量的数乘关系,设,借助,可得. 

    相关试卷

    四川省绵阳市南山中学实验学校2022-2023学年高一数学下学期6月月考试题(Word版附解析):

    这是一份四川省绵阳市南山中学实验学校2022-2023学年高一数学下学期6月月考试题(Word版附解析),共19页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。

    四川省成都市石室中学2022-2023学年高一数学上学期10月月考试题(Word版附解析):

    这是一份四川省成都市石室中学2022-2023学年高一数学上学期10月月考试题(Word版附解析),共16页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    四川省成都市第七中学2022-2023学年高一数学下学期期末试题(Word版附解析):

    这是一份四川省成都市第七中学2022-2023学年高一数学下学期期末试题(Word版附解析),共21页。试卷主要包含了考试结束后,将答题卡交回, 下面选项中方差最大的是, 的值为等内容,欢迎下载使用。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map