搜索
    上传资料 赚现金
    英语朗读宝

    高中数学新教材同步课时精品讲练选择性必修第二册 第4章 §4.1 第2课时 数列的递推公式(含解析)

    高中数学新教材同步课时精品讲练选择性必修第二册 第4章 §4.1 第2课时 数列的递推公式(含解析)第1页
    高中数学新教材同步课时精品讲练选择性必修第二册 第4章 §4.1 第2课时 数列的递推公式(含解析)第2页
    高中数学新教材同步课时精品讲练选择性必修第二册 第4章 §4.1 第2课时 数列的递推公式(含解析)第3页
    还剩9页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    高中数学新教材同步课时精品讲练选择性必修第二册 第4章 §4.1 第2课时 数列的递推公式(含解析)

    展开

    这是一份高中数学新教材同步课时精品讲练选择性必修第二册 第4章 §4.1 第2课时 数列的递推公式(含解析),共12页。
    第2课时 数列的递推公式
    学习目标 1.理解递推公式的含义,能根据递推公式求出数列的前几项.2.了解用累加法、累乘法由递推公式求通项公式.3.会由数列{an}的前n项和Sn求数列{an}的通项公式.

    知识点一 数列的递推公式
    如果一个数列的相邻两项或多项之间的关系可以用一个式子来表示,那么这个式子叫做这个数列的递推公式.
    思考 仅由数列{an}的关系式an=an-1+2(n≥2,n∈N*)就能确定这个数列吗?
    答案 不能.知道了首项和递推公式,才能确定这个数列.
    知识点二 数列的前n项和Sn与an的关系
    1.把数列{an}从第1项起到第n项止的各项之和,称为数列{an}的前n项和,记作Sn,即Sn=a1+a2+…+an.
    2.an=

    1.在数列{an}中,若an+1=2an,n∈N*,则a2=2a1.( √ )
    2.利用an+1=2an,n∈N*可以确定数列{an}.( × )
    3.递推公式是表示数列的一种方法.( √ )
    4.S2n表示数列{an}中所有偶数项的和. ( × )

    一、由递推公式求数列的指定项
    例1 设数列{an}满足an=
    写出这个数列的前5项.
    解 由题意可知a1=1,a2=1+=2,a3=1+=,a4=1+=,a5=1+=1+=.
    反思感悟 由递推公式写出数列的项的方法
    (1)根据递推公式写出数列的前几项,首先要弄清楚公式中各部分的关系,依次代入计算即可.
    (2)若知道的是首项,通常将所给公式整理成用前面的项表示后面的项的形式.
    (3)若知道的是末项,通常将所给公式整理成用后面的项表示前面的项的形式.
    注意:由递推公式写出数列的项时,易忽视数列的周期的判断,导致陷入思维误区.
    跟踪训练1 (1)已知数列{an}的首项a1=1,且满足an+1=an+,则此数列的第3项是(  )
    A.1 B. C. D.
    答案 C
    解析 a1=1,a2=a1+=1,a3=a2+=.
    (2)已知数列{an}满足an+1=1-,且a1=2,则a2 020的值为(  )
    A. B.-1 C.2 D.1
    答案 C
    解析 由an+1=1-及a1=2,得a2=,a3=-1,a4=2,…,至此可发现数列{an}是周期为3的周期数列:2,,-1,2,,-1,….
    而2 020=673×3+1,
    故a2 020=a1=2.
    二、由递推公式求通项公式
    例2 在数列{an}中,a1=1,an+1=an+-,则an等于(  )
    A. B. C. D.
    答案 B
    解析 方法一 (归纳法) 数列的前5项分别为
    a1=1,a2=1+1-=2-=,
    a3=+-=2-=,
    a4=+-=2-=,
    a5=+-=2-=,
    又a1=1,
    由此可得数列的一个通项公式为
    an=.
    方法二 (迭代法) a2=a1+1-,
    a3=a2+-,…,an=an-1+-(n≥2),
    则an=a1+1-+-+-+…+-
    =2-=(n≥2).
    又a1=1,所以an=(n∈N*).
    方法三 (累加法) an+1-an=-,
    a1=1,
    a2-a1=1-,
    a3-a2=-,
    a4-a3=-,

    an-an-1=-(n≥2),
    以上各项相加得
    an=1+1-+-+…+-.
    所以an=(n≥2).
    因为a1=1也适合上式,所以an=(n∈N*).
    反思感悟 由递推公式求通项公式的常用方法
    (1)归纳法:根据数列的某项和递推公式,求出数列的前几项,归纳出通项公式.
    (2)迭代法、累加法或累乘法:递推公式对应的有以下几类:
    ①an+1-an=常数,或an+1-an=f(n)(f(n)是可以求和的),使用累加法或迭代法;
    ②an+1=pan(p为非零常数),或an+1=f(n)an(f(n)是可以求积的),使用累乘法或迭代法;
    ③an+1=pan+q(p,q为非零常数),适当变形后转化为第②类解决.
    跟踪训练2 (1)已知数列{an}满足a1=1,an=an-1+-(n≥2),求an.
    解 因为an=an-1+-(n≥2),
    所以an-an-1=-.
    所以an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1
    =(-)+(-)+…+(-)+1
    =-+1.
    又a1=1也符合上式,
    所以an=-+1,n∈N*.
    (2)已知数列{an}满足a1=1,ln an-ln an-1=1(n≥2),求an.
    解 因为ln an-ln an-1=1,
    所以ln =1,
    即=e(n≥2).
    所以an=··…··a1

    =en-1(n≥2),
    又a1=1也符合上式,
    所以an=en-1,n∈N*.
    三、利用Sn与an的关系求通项公式
    例3 设Sn为数列{an}的前n项和,Sn=2n2-30n.求a1及an.
    解 因为Sn=2n2-30n,
    所以当n=1时,a1=S1=2×12-30×1=-28,
    当n≥2时,an=Sn-Sn-1
    =2n2-30n-[2(n-1)2-30(n-1)]=4n-32.
    验证当n=1时上式成立,
    所以an=4n-32,n∈N*.
    延伸探究 
    将本例的条件“Sn=2n2-30n”改为“Sn=2n2-30n+1”,其他条件不变,求an.
    解 因为Sn=2n2-30n+1,
    所以当n=1时,a1=S1=2×12-30×1+1=-27,
    当n≥2时,an=Sn-Sn-1
    =2n2-30n+1-[2(n-1)2-30(n-1)+1]=4n-32.
    当n=1时不符合上式.
    所以an=
    反思感悟 由Sn求通项公式an的步骤
    (1)当n=1时,a1=S1.
    (2)当n≥2时,根据Sn写出Sn-1,化简an=Sn-Sn-1.
    (3)如果a1也满足当n≥2时,an=Sn-Sn-1的通项公式,那么数列{an}的通项公式为an=Sn-Sn-1;
    否则数列{an}的通项公式要分段表示为an=
    跟踪训练3 已知Sn是数列{an}的前n项和,根据条件求an.
    (1)Sn=2n2+3n+2;
    (2)Sn=3n-1.
    解 (1)当n=1时,a1=S1=7,
    当n≥2时,an=Sn-Sn-1=(2n2+3n+2)-[2(n-1)2+3(n-1)+2]=4n+1,
    又a1=7不适合上式,
    所以an=
    (2)当n=1时,a1=S1=2,
    当n≥2时,an=Sn-Sn-1=(3n-1)-(3n-1-1)=2×3n-1,显然a1=2适合上式,
    所以an=2×3n-1(n∈N*).

    1.已知在数列{an}中,a1=2,an+1=an+n(n∈N*),则a4的值为(  )
    A.5 B.6 C.7 D.8
    答案 D
    解析 因为a1=2,an+1=an+n,
    所以a2=a1+1=2+1=3,
    a3=a2+2=3+2=5,
    a4=a3+3=5+3=8.
    2.已知数列{an}的前n项和Sn=n2-2n,则a2+a18等于(  )
    A.36 B.35 C.34 D.33
    答案 C
    解析 a2=S2-S1=22-2×2-(12-2×1)=1,
    a18=S18-S17=182-2×18-(172-2×17)=33.
    ∴a2+a18=34.
    3.已知数列{an}中,a1=1,a2=2,且an·an+2=an+1(n∈N*),则a2 020的值为(  )
    A.2 B.1 C. D.
    答案 B
    解析 因为an·an+2=an+1(n∈N*),
    由a1=1,a2=2,得a3=2,
    由a2=2,a3=2,得a4=1,
    由a3=2,a4=1,得a5=,
    由a4=1,a5=,得a6=,
    由a5=,a6=,得a7=1,
    由a6=,a7=1,得a8=2,
    由此推理可得数列{an}是一个周期为6的周期数列,
    所以a2 020=a336×6+4=a4=1.
    4.设Sn为数列{an}的前n项和,Sn=n2+n,则an=________.
    答案 2n,n∈N*
    解析 ∵Sn=n2+n,
    ∴当n=1时,a1=S1=2,
    当n≥2时,an=Sn-Sn-1=n2+n-[(n-1)2+(n-1)]=2n,
    验证当n=1时上式成立.
    ∴an=2n,n∈N*.
    5.数列1,3,6,10,15,…的递推公式可以是an=an-1+________(n∈N*,n≥2).由a10=55,则a12=________.
    答案 n 78
    解析 由已知,a2-a1=2,a3-a2=3,a4-a3=4,
    所以递推公式可以写成an=an-1+n.
    所以a12=a11+12=a10+11+12=78.

    1.知识清单:
    (1)数列的递推公式.
    (2)数列的前n项和Sn与an的关系.
    2.方法归纳:归纳法、迭代法、累加法、累乘法.
    3.常见误区:累加法、累乘法中不注意验证首项是否符合通项公式;由Sn求an时忽略验证n=1时的情况.


    1.已知数列{an}满足an=4an-1+3(n≥2,n∈N*),且a1=0,则此数列的第5项是(  )
    A.15 B.255 C.16 D.63
    答案 B
    解析 由递推公式,得a2=3,a3=15,a4=63,a5=255.
    2.数列,-,,-,…的第n项an与第n+1项an+1的关系是(  )
    A.an+1=2an B.an+1=-2an
    C.an+1=an D.an+1=-an
    答案 D
    3.(多选)数列2,4,6,8,10,…的递推公式是(  )
    A.an=an-1+2(n≥2,n∈N*)
    B.an=2an-1(n≥2,n∈N*)
    C.a1=2,an=an-1+2(n≥2,n∈N*)
    D.a1=2,an+1=an+2(n∈N*)
    答案 CD
    解析 A,B中没有说明某一项,无法递推.
    4.已知数列{an}满足a1=2,an+1-an+1=0(n∈N*),则此数列的通项公式an等于(  )
    A.n2+1 B.n+1
    C.1-n D.3-n
    答案 D
    解析 ∵an+1-an=-1.
    ∴当n≥2时,an=a1+(a2-a1)+(a3-a2)+…+(an-an-1)

    =2+(-1)×(n-1)=3-n.
    当n=1时,a1=2也符合上式.
    故数列的通项公式an=3-n(n∈N*).
    5.(多选)已知数列{an}的前n项和满足Sn=2n+1-1,下列说法正确的是(  )
    A.a1=3 B.an=2n(n≥2)
    C.an=2n D.an=2n(n≥2)
    答案 AD
    解析 Sn=2n+1-1,当n=1时,a1=S1=21+1-1=3;
    当n≥2时,an=Sn-Sn-1=(2n+1-1)-(2n-1)=2n.
    当n=1时,不符合上式,
    故an=
    6.已知在数列{an}中,a1=2,an=-(n≥2,n∈N*),则a2 020=________.
    答案 -
    解析 ∵a2=-=-,a3=-=2=a1,a4=-=a2,
    ∴{an}的周期为2,∴a2 020=a2=-.
    7.已知数列{an}的前n项和为Sn=-n2,n∈N*,则an=________.
    答案 -2n+1,n∈N*
    解析 由an=Sn-Sn-1(n≥2)得an=1-2n,
    当n=1时,a1=S1=-1也符合上式.
    ∴an=-2n+1(n∈N*).
    8.已知在数列{an}中,a1a2…an=n2(n∈N*),则a9=______.
    答案 
    解析 a1a2…a8=82,①
    a1a2…a9=92,②
    ②÷①得,a9==.
    9.已知数列{an}满足an+1-an=n+2(n∈N*),且a1=1.
    (1)求a2,a3,a4的值;
    (2)令bn=4an-68n,求数列{bn}的前4项.
    解 (1)因为an+1-an=n+2,且a1=1,
    所以a2=4,a3=8,a4=13.
    (2)b1=4a1-68×1=4×1-68×1=-64,
    b2=4a2-68×2=4×4-68×2=-120,
    b3=4a3-68×3=4×8-68×3=-172,
    b4=4a4-68×4=4×13-68×4=-220.
    10.已知数列{an}满足a1=-1,an+1=an+,n∈N*,求通项公式an.
    解 因为an+1-an=,
    所以a2-a1=,
    a3-a2=,
    a4-a3=,
    …,
    an-an-1=(n≥2),
    以上各式累加得,
    an-a1=++…+
    =1-+-+…+-
    =1-.
    所以an+1=1-,
    所以an=-(n≥2),
    因为a1=-1也符合上式,
    所以an=-(n∈N*).

    11.已知数列{an}满足a1=0,an+1=(n∈N*),则a2 020等于(  )
    A.-3 B.0 C. D.3
    答案 B
    解析 由题意知a1=0,a2==-,a3==,a4==0,a5==-,…,由此可知,an+3=an.所以数列{an}的周期为3,
    又2 020=3×673+1,所以a2 020=a1=0.
    12.下图是某省从1月21日至2月24日的新冠肺炎每日新增确诊病例变化曲线图.

    若该省从1月21日至2月24日的新冠肺炎每日新增确诊人数按日期顺序排列构成数列{an},{an}的前n项和为Sn,则下列说法中正确的是(  )
    A.数列{an}是递增数列
    B.数列{Sn}是递增数列
    C.数列{an}的最大项是a11
    D.数列{Sn}的最大项是S11
    答案 C
    解析 因为1月28日新增确诊人数小于1月27日新增确诊人数,
    即a7>a8,
    所以{an}不是递增数列,所以选项A错误;
    因为2月23日新增确诊病例数为0,
    所以S33=S34,
    所以数列{Sn}不是递增数列,
    所以选项B错误;
    因为1月31日新增病例数最多,从1月21日算起,1月31日是第11天,
    所以数列{an}的最大项是a11,所以选项C正确;
    数列{Sn}的最大项是最后项,所以选项D错误.
    13.已知数列{an}满足a1>0,且an+1=an,则数列{an}的最大项是(  )
    A.a1 B.a9
    C.a10 D.不存在
    答案 A
    解析 因为a1>0,且an+1=an,
    所以an>0,
    所以=0,
    ∴(n+1)an+1-nan=0,
    ∴=,
    ∴···…·
    =×××…×=(n≥2),
    ∴=.
    又∵a1=1,∴an=a1=.
    又a1=1也适合上式,∴an=,n∈N*.
    方法二 (迭代法)
    同方法一,得=,
    ∴an+1=an,
    ∴an=·an-1=··an-2
    =···an-3

    =···…·a1=a1.
    又∵a1=1,∴an=.
    方法三 (构造特殊数列法)
    同方法一,得=,
    ∴(n+1)an+1=nan,
    ∴数列{nan}是常数列,
    ∴nan=1·a1=1,∴an=(n∈N*).

    15.在一个数列中,如果对任意n∈N*,都有anan+1an+2=k(k为常数),那么这个数列叫做等积数列,k叫做这个数列的公积.已知数列{an}是等积数列,且a1=1,a2=2,公积为8,则a1+a2+a3+…+a12=________.
    答案 28
    解析 依题意得数列{an}是周期为3的数列,且a1=1,a2=2,a3=4,因此a1+a2+a3+…+a12=4(a1+a2+a3)=4×(1+2+4)=28.
    16.已知数列{an}满足:a1=m(m为正整数),an+1=若a4=4,求m所有可能的取值.
    解 若a3为奇数,则3a3+1=4,a3=1,若a2为奇数,则3a2+1=1,a2=0(舍去),若a2为偶数,则=1,a2=2.
    若a1为奇数,则3a1+1=2,a1=(舍去),
    若a1为偶数,=2,a1=4;
    若a3为偶数,则=4,a3=8,
    若a2为奇数,则3a2+1=8,a2=(舍去).
    若a2为偶数,则=8,a2=16.
    若a1为奇数,则3a1+1=16,a1=5.
    若a1为偶数,则=16,a1=32.
    故m所有可能的取值为4,5,32.

    • 精品推荐
    • 所属专辑
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map