艺术生高考数学真题演练 专题03 导数及其应用(选择题、填空题)(教师版)
展开专题03 导数及其应用(选择题、填空题)
1.【2019年高考全国Ⅱ卷文数】曲线y=2sinx+cosx在点(π,-1)处的切线方程为
A. B.
C. D.
【答案】C
【解析】
则在点处的切线方程为,
即.
故选C.
【名师点睛】本题考查利用导数工具研究曲线的切线方程,渗透了直观想象、逻辑推理和数学运算素养.采取导数法,利用函数与方程思想解题.学生易在非切点处直接求导数而出错,首先证明已知点是否为切点,若是切点,可以直接利用导数求解;若不是切点,设出切点,再求导,然后列出切线方程.
2.【2019年高考全国Ⅲ卷文数】已知曲线在点(1,ae)处的切线方程为y=2x+b,则
A. B.a=e,b=1
C. D.,
【答案】D
【解析】∵
∴切线的斜率,,
将代入,得.
故选D.
【名师点睛】本题求解的关键是利用导数的几何意义和点在曲线上得到含有a,b的等式,从而求解,属于常考题型.
3.【2018年高考全国Ⅰ卷文数】设函数.若为奇函数,则曲线在点处的切线方程为
A. B.
C. D.
【答案】D
【解析】因为函数是奇函数,所以,解得,
所以,,
所以,
所以曲线在点处的切线方程为,化简可得.
故选D.
【名师点睛】该题考查的是有关曲线在某个点处的切线方程的问题,在求解的过程中,首先需要确定函数解析式,此时利用到结论多项式函数中,奇函数不存在偶次项,偶函数不存在奇次项,从而求得相应的参数值,之后利用求导公式求得,借助于导数的几何意义,结合直线方程的点斜式求得结果.
4.【2017年高考浙江】函数y=f(x)的导函数的图象如图所示,则函数y=f(x)的图象可能是
【答案】D
【解析】原函数先减再增,再减再增,且位于增区间内,
因此选D.
【名师点睛】本题主要考查导数图象与原函数图象的关系:若导函数图象与轴的交点为,且图象在两侧附近连续分布于轴上下方,则为原函数单调性的拐点,运用导数知识来讨论函数单调性时,由导函数的正负,得出原函数的单调区间.
5.【2018年高考全国Ⅱ卷文数】函数的图像大致为
【答案】B
【解析】为奇函数,舍去A;
,∴舍去D;
时,,单调递增,舍去C.
因此选B.
【名师点睛】有关函数图象识别问题的常见题型及解题思路:(1)由函数的定义域,判断图象左右的位置,由函数的值域,判断图象的上下位置;(2)由函数的单调性,判断图象的变化趋势;(3)由函数的奇偶性,判断图象的对称性;(4)由函数的周期性,判断图象的周期性.
6.【2018年高考全国Ⅲ卷文数】函数的图像大致为
【答案】D
【解析】函数图象过定点,排除A,B;
令,则,
由得,得或,此时函数单调递增,
由得,得或,此时函数单调递减,排除C.
故选D.
【名师点睛】本题主要考查函数的图象的识别和判断,利用函数图象过的定点及由导数判断函数的单调性是解决本题的关键.
7.【2017年高考山东文数】若函数(是自然对数的底数)在的定义域上单调递增,则称函数具有M性质.下列函数中具有M性质的是
A. B.
C. D.
【答案】A
【解析】对于A,在R上单调递增,故具有性质;
对于B,,令,则,
∴当或时,,当时,,
∴在,上单调递增,在上单调递减,
故不具有性质;
对于C,在R上单调递减,故不具有性质;
对于D,易知在定义域内有增有减,故不具有性质.
故选A.
【名师点睛】本题考查新定义问题,属于创新题,符合新高考的动向,它考查学生的阅读理解能力,接受新思维的能力,考查学生分析问题与解决问题的能力,新定义的概念实质上只是一个载体,解决新问题时,只要通过这个载体把问题转化为我们已经熟悉的知识即可.
8.【2019年高考浙江】已知,函数.若函数恰有3个零点,则
A.a<–1,b<0 B.a<–1,b>0
C.a>–1,b<0 D.a>–1,b>0
【答案】C
【解析】当x<0时,y=f(x)﹣ax﹣b=x﹣ax﹣b=(1﹣a)x﹣b=0,得x,
则y=f(x)﹣ax﹣b最多有一个零点;
当x≥0时,y=f(x)﹣ax﹣bx3(a+1)x2+ax﹣ax﹣bx3(a+1)x2﹣b,
,
当a+1≤0,即a≤﹣1时,y′≥0,y=f(x)﹣ax﹣b在[0,+∞)上单调递增,
则y=f(x)﹣ax﹣b最多有一个零点,不合题意;
当a+1>0,即a>﹣1时,令y′>0得x∈(a+1,+∞),此时函数单调递增,
令y′<0得x∈[0,a+1),此时函数单调递减,则函数最多有2个零点.
根据题意,函数y=f(x)﹣ax﹣b恰有3个零点⇔函数y=f(x)﹣ax﹣b在(﹣∞,0)上有一个零点,在[0,+∞)上有2个零点,
如图:
∴0且,
解得b<0,1﹣a>0,b(a+1)3,
则a>–1,b<0.
故选C.
【名师点睛】本题考查函数与方程,导数的应用.当x<0时,y=f(x)﹣ax﹣b=x﹣ax﹣b=(1﹣a)x﹣b最多有一个零点;当x≥0时,y=f(x)﹣ax﹣bx3(a+1)x2﹣b,利用导数研究函数的单调性,根据单调性画出函数的草图,从而结合题意可列不等式组求解.
9.【2019年高考全国Ⅰ卷文数】曲线在点处的切线方程为____________.
【答案】
【解析】
所以切线的斜率,
则曲线在点处的切线方程为,即.
【名师点睛】准确求导数是进一步计算的基础,本题易因为导数的运算法则掌握不熟,而导致计算错误.求导要“慢”,计算要准,是解答此类问题的基本要求.
10.【2019年高考天津文数】曲线在点处的切线方程为__________.
【答案】
【解析】∵,
∴,
故所求的切线方程为,即.
【名师点睛】曲线切线方程的求法:
(1)以曲线上的点(x0,f(x0))为切点的切线方程的求解步骤:
①求出函数f(x)的导数f′(x);
②求切线的斜率f′(x0);
③写出切线方程y-f(x0)=f′(x0)(x-x0),并化简.
(2)如果已知点(x1,y1)不在曲线上,则设出切点(x0,y0),解方程组得切点(x0,y0),进而确定切线方程.
11.【2018年高考天津文数】已知函数f(x)=exlnx,f′(x)为f(x)的导函数,则f′(1)的值为__________.
【答案】e
【解析】由函数的解析式可得,
则.
即的值为e.
【名师点睛】本题主要考查导数的运算法则,基本初等函数的导数公式等知识,意在考查学生的转化能力和计算求解能力.
12.【2018年高考全国Ⅱ卷文数】曲线在点处的切线方程为__________.
【答案】y=2x–2
【解析】由,得.
则曲线在点处的切线的斜率为,
则所求切线方程为,即.
【名师点睛】求曲线在某点处的切线方程的步骤:①求出函数在该点处的导数值即为切线斜率;②写出切线的点斜式方程;③化简整理.
13.【2017年高考全国Ⅰ卷文数】曲线在点(1,2)处的切线方程为______________.
【答案】
【解析】设,则,所以,
所以曲线在点处的切线方程为,即.
【名师点睛】求曲线的切线方程是导数的重要应用之一,用导数求切线方程的关键在于求出斜率,其求法为:设是曲线上的一点,则以为切点的切线方程是.若曲线在点处的切线平行于轴(即导数不存在)时,由切线定义知,切线方程为.
14.【2017年高考天津文数】已知,设函数的图象在点(1,)处的切线为l,则l在y轴上的截距为___________.
【答案】
【解析】由题可得,则切点为,
因为,所以切线l的斜率为,
切线l的方程为,
令可得,
故在轴上的截距为.
【名师点睛】本题考查导数的几何意义,属于基础题型,函数在点处的导数的几何意义是曲线在点处的切线的斜率,切线方程为.解题时应注意:求曲线切线时,要分清在点处的切线与过点的切线的不同,没切点应设出切点坐标,建立方程组进行求解.
15.【2019年高考江苏】在平面直角坐标系中,P是曲线上的一个动点,则点P到直线的距离的最小值是 ▲ .
【答案】4
【解析】由,得,
设斜率为的直线与曲线切于,
由得(舍去),
∴曲线上,点到直线的距离最小,
最小值为.
故答案为.
【名师点睛】本题考查曲线上任意一点到已知直线的最小距离,渗透了直观想象和数学运算素养.采取导数法,利用数形结合和转化与化归思想解题.
16.【2019年高考江苏】在平面直角坐标系中,点A在曲线y=lnx上,且该曲线在点A处的切线经过点(-e,-1)(e为自然对数的底数),则点A的坐标是 ▲ .
【答案】
【解析】设出切点坐标,得到切线方程,然后求解方程得到横坐标的值,可得切点坐标.
设点,则.
又,
当时,,
则曲线在点A处的切线为,
即,
将点代入,得,
即,
考察函数,
当时,,当时,,
且,
当时,单调递增,
注意到,
故存在唯一的实数根,
此时,
故点的坐标为.
【名师点睛】导数运算及切线的理解应注意的问题:
一是利用公式求导时要特别注意除法公式中分子的符号,防止与乘法公式混淆.
二是直线与曲线公共点的个数不是切线的本质,直线与曲线只有一个公共点,直线不一定是曲线的切线,同样,直线是曲线的切线,则直线与曲线可能有两个或两个以上的公共点.
17.【2018年高考江苏】若函数在内有且只有一个零点,则在上的最大值与最小值的和为________.
【答案】–3
【解析】由得或,
因为函数在上有且仅有一个零点且,
所以,
因此
解得.
从而函数在上单调递增,在上单调递减,
所以
,
则
故答案为.
【名师点睛】对于函数零点的个数问题,可利用函数的单调性、草图确定其中参数的取值条件.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等.
18.【2017年高考江苏】已知函数,其中e是自然对数的底数.若,则实数的取值范围是 ▲ .
【答案】
【解析】因为,所以函数是奇函数,
因为,
所以函数在上单调递增,
又,即,
所以,即,
解得,
故实数的取值范围为.
【名师点睛】解函数不等式时,首先根据函数的性质把不等式转化为的形式,然后根据函数的单调性去掉“”,转化为具体的不等式(组),此时要注意与的取值应在函数的定义域内.
艺术生高考数学真题演练 专题14 概率与统计(选择题、填空题)(学生版): 这是一份艺术生高考数学真题演练 专题14 概率与统计(选择题、填空题)(学生版),共4页。
艺术生高考数学真题演练 专题14 概率与统计(选择题、填空题)(教师版): 这是一份艺术生高考数学真题演练 专题14 概率与统计(选择题、填空题)(教师版),共8页。试卷主要包含了故选C等内容,欢迎下载使用。
艺术生高考数学真题演练 专题07 平面解析几何(选择题、填空题)(教师版): 这是一份艺术生高考数学真题演练 专题07 平面解析几何(选择题、填空题)(教师版),共22页。