年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2023年浙江省绍兴市中考数学真题 (解析版)

    2023年浙江省绍兴市中考数学真题 (解析版)第1页
    2023年浙江省绍兴市中考数学真题 (解析版)第2页
    2023年浙江省绍兴市中考数学真题 (解析版)第3页
    还剩23页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2023年浙江省绍兴市中考数学真题 (解析版)

    展开

    这是一份2023年浙江省绍兴市中考数学真题 (解析版),共26页。试卷主要包含了小器一容三斛;大器一,填空题,解答题等内容,欢迎下载使用。
    数学卷Ⅰ(选择题)一、选择题(本大题有10小题,每小题4分,共40分,请选出每小题中一个最符合题意的选项,不选、多选、错选,均不给分1. 计算的结果是(    A.  B.  C. 1 D. 3【答案】A【解析】【分析】根据有理数的减法法则进行计算即可.【详解】解:故选:A【点睛】本题主要考查了有理数的减法,解题的关键是掌握有理数的减法计算法则.减去一个数等于加上它的相反数.2. 据报道,2023年“五一”假期全国国内旅游出游合计274000000人次.数字274000000用科学记数法表示是(    A.  B.  C.  D. 【答案】B【解析】【分析】科学记数法的表现形式为的形式,其中为整数,确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同,由此进行求解即可得到答案.【详解】解:故选B【点睛】本题主要考查了科学记数法,解题的关键在于能够熟练掌握科学记数法的定义.3. 8个相同的立方体搭成的几何体如图所示,则它的主视图是(      A.    B.    C.    D.   【答案】D【解析】【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【详解】从正面看第一层是三个小正方形,第二层左边一个小正方形,中间没有,右边1个小正方形,故选:D【点睛】本题考查了三视图的知识,要求同学们掌握主视图是从物体的正面看得到的视图.4. 下列计算正确的是(    A.  B.  C.  D. 【答案】C【解析】【分析】根据同底数幂相除法则判断选项A;根据幂的乘方法则判断选项B;根据平方差公式判断选项C;根据完全平方公式判断选项D即可.【详解】解:A. ,原计算错误,不符合题意;B. ,原计算错误,不符合题意;C. ,原计算正确,符合题意;D. ,原计算错误,不符合题意;故选:C.【点睛】本题考查了同底数幂相除法则、幂的乘方法则、平方差公式、完全平方公式等知识,熟练掌握各运算法则是解答本题的关键.5. 在一个不透明的袋子里装有2个红球和5个白球,它们除颜色外都相同,从中任意摸出1个球,则摸出的球为红球的概率是(    A.  B.  C.  D. 【答案】C【解析】【分析】根据概率的意义直接计算即可.【详解】解:在一个不透明的袋子中装有2个红球和5个白球,它们除颜色外其他均相同,从中任意摸出1个球,共有7种可能,摸到红球的可能为2种,则摸出红球的概率是故选:C【点睛】本题考查了概率的计算,解题关键是熟练运用概率公式.6. 《九章算术》中有一题:“今有大器五、小器一容三斛;大器一、小器五容二斛.问大、小器各容几何?”译文:今有大容器5个,小容器1个,总容量为3斛(斛:古代容是单位);大容器1个,小容器5个,总容暴为2斛.问大容器、小容器的容量各是多少斛?设大容器的容量为斛,小容器的容量为斛,则可列方程组是(    A.  B.  C.  D. 【答案】B【解析】【分析】设大容器的容积为x斛,小容器的容积为y斛,根据“大容器5个,小容器1个,总容量为3斛;大容器1个,小容器5个,总容量为2斛”即可得出关于xy的二元一次方程组.【详解】解:设大容器的容积为x斛,小容器的容积为y斛,根据题意得:故选:B【点睛】本题考查了由实际问题抽象出二元一次方程组,根据数量关系列出关于xy的二元一次方程组是解题的关键.7. 在平面直角坐标系中,将点先向右平移2个单位,再向上平移1个单位,最后所得点的坐标是(    A.  B.  C.  D. 【答案】D【解析】【分析】横坐标加2,纵坐标加1即可得出结果.【详解】解:将点先向右平移2个单位,再向上平移1个单位,最后所得点的坐标是故选:D【点睛】本题考查点的平移中坐标的变换,把向上(或向下)平移h个单位,对应的纵坐标加上(或减去)h,,把向右上(或向左)平移n个单位,对应的横坐标加上(或减去)n.掌握平移规律是解题的关键.8. 如图,在矩形中,为对角线的中点,.动点在线段上,动点在线段上,点同时从点出发,分别向终点运动,且始终保持.点关于的对称点为;点关于的对称点为.在整个过程中,四边形形状的变化依次是(    A. 菱形平行四边形矩形平行四边形菱形B. 菱形正方形平行四边形菱形平行四边形C. 平行四边形矩形平行四边形菱形平行四边形D. 平行四边形菱形正方形平行四边形菱形【答案】A【解析】【分析】根据题意,分别证明四边形是菱形,平行四边形,矩形,即可求解.【详解】∵四边形是矩形,∵对称,∵对称,同理∴四边形是平行四边形,如图所示,  三点重合时,∴四边形是菱形,如图所示,当分别为的中点时,,则中,连接是等边三角形,中点,根据对称性可得是直角三角形,且∴四边形是矩形,    分别与重合时,都是等边三角形,则四边形是菱形  在整个过程中,四边形形状的变化依次是菱形平行四边形矩形平行四边形菱形,故选:A【点睛】本题考查了菱形性质与判定,平行四边形的性质与判定,矩形的性质与判定,勾股定理与勾股定理的逆定理,轴对称的性质,含30度角的直角三角形的性质,熟练掌握以上知识是解题的关键.9. 已知点在同一个函数图象上,则这个函数图象可能是(    A.    B.    C.    D.   【答案】B【解析】【分析】在同一个函数图象上,可得NP关于y轴对称,当时,yx的增大而增大,即可得出答案.【详解】解:∵∴得NP关于y轴对称,∴选项AC错误,在同一个函数图象上,∴当时,yx的增大而增大,∴选项D错误,选项B正确.故选:B【点睛】此题考查了函数的图象.注意掌握排除法在选择题中的应用是解此题的关键.10. 如图,在中,是边上的点(不与点重合).过点于点;过点于点是线段上的点,是线段上的点,.若已知的面积,则一定能求出(      A. 的面积 B. 的面积C. 的面积 D. 的面积【答案】D【解析】【分析】如图所示,连接,证明,得出,由已知得出,则,又,则,进而得出,可得,结合题意得出,即可求解.【详解】解:如图所示,连接  ,又∵故选:D【点睛】本题考查了相似三角形的性质与判定,证明是解题的关键.卷Ⅱ(非选择题)二、填空题(本大题有6小题,每小题5分,共30分)11. 因式分解:m23m__________【答案】【解析】【分析】题中二项式中各项都含有公因式,利用提公因式法因式分解即可得到答案.【详解】解:故答案为:【点睛】本题考查整式运算中的因式分解,熟练掌握因式分解的方法技巧是解决问题的关键.12. 如图,四边形内接于圆,若,则的度数是________【答案】##80【解析】【分析】根据圆内接四边形的性质:对角互补,即可解答.【详解】解:四边形内接于故答案为:【点睛】本题主要考查了圆内接四边形的性质,掌握圆内接四边形的对角互补是解答本题的关键.13. 方程的解是________【答案】【解析】【分析】先去分母,左右两边同时乘以,再根据解一元一次方程的方法和步骤进行解答,最后进行检验即可.【详解】解:去分母,得:化系数1,得:检验:当时,是原分式方程的解.故答案为:【点睛】本题主要考查了解分式方程,解题的关键是掌握解分式方程的方法和步骤,正确找出最简公分母,注意解分式方程要进行检验.14. 如图,在菱形中,,连接,以点为圆心,长为半径作弧,交直线于点,连接,则的度数是________  【答案】【解析】【分析】根据题意画出图形,结合菱形的性质可得,再进行分类讨论:当点E在点A上方时,当点E在点A下方时,即可进行解答.【详解】解:四边形为菱形,连接①当点E在点A上方时,如图②当点E在点A下方时,如图故答案为:  【点睛】本题主要考查了菱形的性质,等腰三角形的性质,三角形的内角和以及三角形的外角定理,解题的关键是掌握菱形的对角线平分内角;等腰三角形两底角相等,三角形的内角和为;三角形的一个外角等于与它不相邻的两个内角之和.15. 如图,在平面直角坐标系中,函数为大于0的常数,)图象上的两点,满足的边轴,边轴,若的面积为6,则的面积是________【答案】2【解析】【分析】过点轴于点轴于点于点,利用,得到,结合梯形的面积公式解得,再由三角形面积公式计算,即可解答.【详解】解:如图,过点轴于点轴于点于点  故答案为:2【点睛】本题考查反比例函数中的几何意义,是重要考点,掌握相关知识是解题关键.16. 在平面直角坐标系中,一个图形上的点都在一边平行于轴的矩形内部(包括边界),这些矩形中面积最小的矩形称为该图形的关联矩形.例如:如图,函数的图象(抛物线中的实线部分),它的关联矩形为矩形.若二次函数图象的关联矩形恰好也是矩形,则________  【答案】【解析】【分析】根据题意求得点,根据题意分两种情况,待定系数法求解析式即可求解.【详解】,当时,,四边形是矩形,①当抛物线经过时,将点代入解得:②当抛物线经过点时,将点,代入解得:综上所述,故答案为:【点睛】本题考查了待定系数法求抛物线解析式,理解新定义,最小矩形的限制条件是解题的关键.三、解答题(本大题有8小题,第17~20小题每小题8分,第21小题10分,第2223小题每小题12分,第24小题14分,共80分.解答需写出必要的文字说明、演算步骤或证明过程)17. 1)计算:2)解不等式:【答案】11;(2【解析】【分析】1)根据零指数幂的性质、二次根式的化简、绝对值的性质依次解答;2)先移项,再合并同类项,最后化系数为1即可解答.【详解】解:(1)原式2)移项得原不等式的解是【点睛】本题考查实数的混合运算、零指数幂、二次根式的化简和解一元一次不等式等知识,是基础考点,掌握相关知识是解题关键.18. 某校兴趣小组通过调查,形成了如下调查报告(不完整).调查目的1.了解本校初中生最喜爱的球类运动项目2.给学校提出更合理地配置体育运动器材和场地的建议调查方式随机抽样调查调查对象部分初中生调查内容你最喜爱的一个球类运动项目(必选)A.篮球    B.乒乓球    C.足球    D.排球    E.羽毛球调查结果    建议……结合调查信息,回答下列问题:1本次调查共抽查了多少名学生?2估计该校900名初中生中最喜爱篮球项目的人数.3假如你是小组成员,请你向该校提一条合理建议.【答案】1100    2360    3答案不唯一,见解析【解析】【分析】1)根据乒乓球人数和所占比例,求出抽查的学生数;2)先求出喜爱篮球学生比例,再乘以总数即可;3)从图中观察或计算得出,合理即可.【小问1详解】被抽查学生数:答:本次调查共抽查了100名学生.【小问2详解】被抽查的100人中最喜爱羽毛球的人数为:∴被抽查的100人中最喜爱篮球的人数为:(人).答:估计该校900名初中生中最喜爱篮球项目的人数为360【小问3详解】答案不唯一,如:因为喜欢篮球的学生较多,建议学校多配置篮球器材、增加篮球场地等.【点睛】本题考查从条形统计图和扇形统计图获取信息的能力,并用所获取的信息反映实际问题.19. 1是某款篮球架,图2是其示意图,立柱垂直地面,支架交于点,支架于点,支架平行地面,篮筺与支架在同一直线上,米,米,  1的度数.2某运动员准备给篮筐挂上篮网,如果他站在発子上,最高可以把篮网挂到离地面米处,那么他能挂上篮网吗?请通过计算说明理由.(参考数据:【答案】1    2该运动员能挂上篮网,理由见解析【解析】【分析】1)根据直角三角形的两个锐角互余即可求解;2)延长交于点,根据题意得出,解,求得,根据比较即可求解.【小问1详解】解:∵【小问2详解】该运动员能挂上篮网,理由如下.如图,延长交于点  又∵中,∴该运动员能挂上篮网.【点睛】本题考查了解直角三角形的应用,直角三角形的两个锐角互余,熟练掌握三角函数的定义是解题的关键.20. 一条笔直的路上依次有三地,其中两地相距1000米.甲、乙两机器人分别从两地同时出发,去目的地,匀速而行.图中分别表示甲、乙机器人离地的距离(米)与行走时间(分钟)的函数关系图象.  1所在直线的表达式.2出发后甲机器人行走多少时间,与乙机器人相遇?3甲机器人到地后,再经过1分钟乙机器人也到地,求两地间的距离.【答案】1    2出发后甲机器人行走分钟,与乙机器人相遇    3两地间的距离为600【解析】【分析】1)利用待定系数法即可求解;2)利用待定系数法求出所在直线的表达式,再列方程组求出交点坐标,即可;3)列出方程即可解决.【小问1详解】所在直线的表达式为【小问2详解】所在直线的表达式为解得甲、乙机器人相遇时,即,解得∴出发后甲机器人行走分钟,与乙机器人相遇.【小问3详解】设甲机器人行走分钟时到地,地与地距离则乙机器人分钟后到地,地与地距离,得答:两地间的距离为600米.【点睛】本题考查了一次函数的图象与性质,用待定系数法可求出函数表达式,要利用方程组的解,求出两个函数的交点坐标,充分应用数形结合思想是解题的关键.21. 如图,的直径,上一点,过点的切线,交的延长线于点,过点于点  1,求的度数.2,求的长.【答案】1    2【解析】【分析】1)根据三角形的外角的性质,即可求解.2)根据的切线,可得,在中,勾股定理求得,根据,可得,进而即可求解.【小问1详解】解:∵于点  【小问2详解】的切线,的半径,中,,即【点睛】本题考查了三角形外角的性质,切线的性质,勾股定理,平行线分线段成比例,熟练掌握以上知识是解题的关键.22. 如图,在正方形中,是对角线上的一点(与点不重合),分别为垂足.连接,并延长于点  1求证:2判断是否垂直,并说明理由.【答案】1见解析    2垂直,理由见解析【解析】【分析】1)由正方形的性质,得到,结合垂直于同一条直线的两条直线平行,可得,再根据平行线的性质解答即可;2)连接于点,由证明,再根据全等三角形对应角相等得到,继而证明四边形为矩形,最后根据矩形的性质解答即可.【小问1详解】解:在正方形中,  小问2详解】垂直,理由如下.连接于点为正方形的对角线,在正方形中,四边形为矩形,又∵【点睛】本题考查正方形的性质、平行线的性质、全等三角形的判断与性质、矩形的判定与性质等知识,综合性较强,是重要考点,掌握相关知识是解题关键.23. 已知二次函数1时,①求该函数图象的顶点坐标.②当时,求的取值范围.2时,的最大值为2;当时,的最大值为3,求二次函数的表达式.【答案】1;②当时,    2【解析】【分析】1)①将代入解析式,化为顶点式,即可求解;②已知顶点,根据二次函数的增减性,得出当时,有最大值7,当时取得最小值,即可求解;2)根据题意时,的最大值为2时,的最大值为3,得出抛物线的对称轴轴的右侧,即,由抛物线开口向下,时,的最大值为2,可知,根据顶点坐标的纵坐标为3,求出,即可得解.【小问1详解】解:①当时,∴顶点坐标为②∵顶点坐标为.抛物线开口向下,时,增大而增大,时,增大而减小,∴当时,有最大值7∴当时取得最小值,最小值∴当时,【小问2详解】时,的最大值为2时,的最大值为3∴抛物线的对称轴轴的右侧,∵抛物线开口向下,时,的最大值为2又∵∴二次函数的表达式为【点睛】本题考查了待定系数法求二次函数解析式,顶点式,二次函数的最值问题,熟练掌握二次函数的性质是解题的关键.24. 在平行四边形中(顶点按逆时针方向排列),为锐角,且  1如图1,求边上的高的长.2是边上的一动点,点同时绕点按逆时针方向旋转得点①如图2,当点落在射线上时,求的长.②当是直角三角形时,求长.【答案】18    2;②【解析】【分析】1)利用正弦的定义即可求得答案;2)①先证明,再证明,最后利用相似三角形对应边成比例列出方程即可;②分三种情况讨论完成,第一种:为直角顶点;第二种:为直角顶点;第三种,为直角顶点,但此种情况不成立,故最终有两个答案.【小问1详解】中,中,小问2详解】①如图1,作于点,由(1)得,,则延长线于点,则  由旋转知,则,即②由旋转得又因为,所以情况一:当以为直角顶点时,如图2  落在线段延长线上.由(1)知,情况二:当以为直角顶点时,如图3  与射线的交点为于点又∵,则化简得解得情况三:当以为直角顶点时,落在的延长线上,不符合题意.综上所述,【点睛】本题考查了平行四边形的性质,正弦的定义,全等的判定及性质,相似的判定及性质,理解记忆相关定义,判定,性质是解题的关键.

    相关试卷

    2023年浙江省绍兴市中考数学真题试卷(解析版):

    这是一份2023年浙江省绍兴市中考数学真题试卷(解析版),共27页。试卷主要包含了小器一容三斛;大器一,填空题,解答题等内容,欢迎下载使用。

    精品解析:2022年浙江省绍兴市中考数学真题(解析版):

    这是一份精品解析:2022年浙江省绍兴市中考数学真题(解析版),共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2021年浙江省绍兴市中考数学真题试卷 解析版:

    这是一份2021年浙江省绍兴市中考数学真题试卷 解析版,共30页。试卷主要包含了选择题,填空题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map