终身会员
搜索
    上传资料 赚现金
    沪教版五四制数学九年级上册24.5《相似三角形的性质》(第2课时)精品教学课件+作业(含答案)
    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 课件
      24.5《相似三角形的性质》(第2课时)(教材配套课件).pptx
    • 练习
      24.5《相似三角形的性质》(第2课时)(夯实基础+能力提升)(原卷版).docx
    • 24.5《相似三角形的性质》(第2课时)(夯实基础+能力提升)(解析版).docx
    沪教版五四制数学九年级上册24.5《相似三角形的性质》(第2课时)精品教学课件+作业(含答案)01
    沪教版五四制数学九年级上册24.5《相似三角形的性质》(第2课时)精品教学课件+作业(含答案)02
    沪教版五四制数学九年级上册24.5《相似三角形的性质》(第2课时)精品教学课件+作业(含答案)03
    沪教版五四制数学九年级上册24.5《相似三角形的性质》(第2课时)精品教学课件+作业(含答案)04
    沪教版五四制数学九年级上册24.5《相似三角形的性质》(第2课时)精品教学课件+作业(含答案)05
    沪教版五四制数学九年级上册24.5《相似三角形的性质》(第2课时)精品教学课件+作业(含答案)06
    沪教版五四制数学九年级上册24.5《相似三角形的性质》(第2课时)精品教学课件+作业(含答案)07
    沪教版五四制数学九年级上册24.5《相似三角形的性质》(第2课时)精品教学课件+作业(含答案)08
    沪教版五四制数学九年级上册24.5《相似三角形的性质》(第2课时)精品教学课件+作业(含答案)01
    沪教版五四制数学九年级上册24.5《相似三角形的性质》(第2课时)精品教学课件+作业(含答案)02
    沪教版五四制数学九年级上册24.5《相似三角形的性质》(第2课时)精品教学课件+作业(含答案)01
    沪教版五四制数学九年级上册24.5《相似三角形的性质》(第2课时)精品教学课件+作业(含答案)02
    沪教版五四制数学九年级上册24.5《相似三角形的性质》(第2课时)精品教学课件+作业(含答案)03
    还剩22页未读, 继续阅读
    下载需要30学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    沪教版 (五四制)九年级上册第二十四章 相似三角形第三节 相似三角形24.5 相似三角形的性质获奖教学作业课件ppt

    展开
    这是一份沪教版 (五四制)九年级上册第二十四章 相似三角形第三节 相似三角形24.5 相似三角形的性质获奖教学作业课件ppt,文件包含245《相似三角形的性质》第2课时教材配套课件pptx、245《相似三角形的性质》第2课时夯实基础+能力提升解析版docx、245《相似三角形的性质》第2课时夯实基础+能力提升原卷版docx等3份课件配套教学资源,其中PPT共30页, 欢迎下载使用。

    24.5 相似三角形的性质(第2课时)(夯实基础+能力提升)

    夯实基础

    一.选择题(共5小题)

    1.(2021秋•崇明区期末)如果两个相似三角形的周长比为14,那么这两个三角形的对应中线的比为(  )

    A12 B14 C18 D116

    【分析】根据相似三角形的性质判断即可.

    【解答】解:因为两个相似三角形的周长比等于相似比,两个相似三角形的对应中线的比也等于相似比,

    所以:如果两个相似三角形的周长比为14,那么这两个三角形的对应中线的比为14

    故选:B

    【点评】本题考查了相似三角形的性质,熟练掌握相似三角形的性质是解题的关键.

    2.(2021秋•黄浦区期末)如果两个相似三角形的周长比为14,那么它们的对应角平分线的比为(  )

    A14 B12 C116 D

    【分析】利用相似三角形的性质:相似三角形的对应周长的比等于相似比,对应角平分线的比等于相似比,据此作答即可.

    【解答】解:∵两个相似三角形的周长比为14

    ∴两个相似三角形的相似比为14

    ∴它们的对应角平分线的比为14

    故选:A

    【点评】本题主要考查相似三角形的性质,解答的关键是熟记相似三角形的性质并灵活运用.

    3.(2021秋•徐汇区校级期中)如图,点A17),B11),C41),D61),若△CDE与△ABC相似,那么在下列选项中,点E的坐标不可能是(  )

    A.(62 B.(63 C.(65 D.(42

    【分析】根据相似三角形的判定:两边对应成比例且夹角相等的两三角形相似即可判断.

    【解答】解:△ABC中,∠ABC90°,AB6BC3ABBC2

    A.当点E的坐标为(62)时,∠ECD90°,CD2DE1,则ABBCCDDE,△CDE∽△ABC,故本选项不符合题意;

    B.当点E的坐标为(63)时,∠CDE90°,CD2DE2,则ABBCCDDE,△CDE与△ABC不相似,故本选项符合题意;

    C.当点E的坐标为(65)时,∠CDE90°,CD2DE4,则ABBCDECD,△EDC∽△ABC,故本选项不符合题意;

    D.当点E的坐标为(42)时,∠CDE90°,CD2CE1,则ABBCCDCE,△DCE∽△ABC,故本选项不符合题意.

    故选:B

    【点评】本题考查了相似三角形的判定,难度中等.牢记判定定理是解题的关键

    4.(2021秋•浦东新区校级期中)已知两个相似三角形的相似比为14,则它们的周长比为(  )

    A14 B41 C12 D116

    【分析】直接利用相似三角形的周长比等于相似比,进而得出答案.

    【解答】解:∵两个相似三角形的相似比为14

    ∴它们的周长比为:14

    故选:A

    【点评】此题主要考查了相似三角形的性质,正确掌握相似三角形的性质是解题关键.

    5.(2020秋•浦东新区期中)已知两个相似三角形的周长比为49,则它们的面积比为(  )

    A49 B23 C818 D1681

    【分析】根据相似三角形周长的比等于相似比、相似三角形面积的比等于相似比的平方解答即可.

    【解答】解:∵两个相似三角形的周长比为49

    ∴两个相似三角形的相似比为49

    ∴两个相似三角形的面积比为1681

    故选:D

    【点评】本题考查的是相似三角形的性质,掌握相似三角形周长的比等于相似比、相似三角形面积的比等于相似比的平方是解题的关键.

    二.填空题(共13小题)

    6.(2022春•松江区校级期中)两个相似三角形的面积之比为34,则这两个三角形的周长之比为  2 

    【分析】相似三角形的周长的比等于相似比;相似三角形的面积的比等于相似比的平方.直接根据相似三角形的性质即可得出结论.

    【解答】解:∵两个相似三角形的面积之比为34

    ∴相似比是2

    ∵相似三角形的周长比等于相似比,

    ∴这两个三角形的周长之比为:2

    故答案为:2

    【点评】本题考查的是相似三角形的性质,熟知相似三角形的面积的比等于相似比的平方是解答此题的关键.

    7.(2021秋•金山区期末)如果两个相似三角形的面积比为14,其中较大三角形的周长为18,那么较小三角形的周长是  9 

    【分析】根据相似三角形的性质:相似三角形的周长的比等于相似比,面积的比等于相似比的平方,据此即可求解.

    【解答】解:设较小三角形的周长是x,则

    x18

    解得:x9

    故较小三角形的周长是9

    故答案为:9

    【点评】本题考查的是相似三角形的性质,掌握相似三角形周长的比等于相似比,相似三角形面积的比等于相似比的平方是解题的关键.

    8.(2021秋•杨浦区期末)如果两个相似三角形对应边之比是49,那么它们的周长之比等于  49 

    【分析】根据相似三角形的性质得出即可.

    【解答】解:∵两个相似三角形对应边之比是49

    ∴它们的周长之比等于49

    故答案为:49

    【点评】本题考查了相似三角形的性质,能熟记相似三角形的周长之比等于相似比是解此题的关键.

    9.(2021秋•虹口区期末)在网格中,每个小正方形的顶点称为格点,以格点为顶点的三角形称为“格点三角形”.如图,在4×4的网格中,△ABC是一个格点三角形,如果△DEF也是该网格中的一个格点三角形,它与△ABC相似且面积最大,那么△DEF与△ABC相似比的值是   

    【分析】根据表格求出ABBCAC的长,由题意画出△DEF与△ABC相似,且面积最大,求出相似比即可.

    【解答】解:由表格可得:ABBC2AC

    如图所示:作△DEFDEDFEF5

    ∴△DEF∽△ABC

    则△DEF与△ABC相似比的值是

    故答案为:

    【点评】此题考查了相似三角形的性质,以及勾股定理,熟练掌握相似三角形的性质是解本题的关键.

    10.(2021秋•青浦区期末)如果两个相似三角形的周长比为23,那么它们的对应高的比为  23 

    【分析】根据相似三角形的周长比等于相似比可求得其相似比,再根据对应高线的比等于相似比可得到答案.

    【解答】解:∵两个相似三角形的周长比为23

    ∴这两个相似三角形的相似比为23

    ∴它们的对应高的比为:23

    故答案为:23

    【点评】本题主要考查相似三角形的性质,掌握相似三角形的周长比、对应高线比等于相似比是解题的关键.

    11.(2020秋•松江区期中)已知两相似三角形的对应中线的比是23,其中较大的三角形的面积为27,则较小的三角形的面积是 12 

    【分析】根据相似三角形的性质得到两相似三角形的面积比是49,根据题意列式计算即可.

    【解答】解:∵两相似三角形的对应中线的比是23

    ∴两相似三角形的相似比是23

    ∴两相似三角形的面积比是49

    ∵较大的三角形的面积为27

    ∴较小的三角形的面积为:27×12

    故答案为:12

    【点评】本题考查的是相似三角形的性质,掌握相似三角形面积的比等于相似比的平方相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比是解题的关键.

    12.(2020秋•徐汇区校级期中)两个三角形的相似比是23,那么它们面积的比是 49 

    【分析】根据相似三角形面积的比等于相似比的平方计算即可.

    【解答】解:∵两个三角形的相似比是23

    ∴它们面积的比是(2

    故答案为:49

    【点评】本题考查的是相似三角形的性质,掌握相似三角形面积的比等于相似比的平方是解题的关键.

    13.(2019秋•宝山区期末)如果两个相似三角形的周长比为12,那么它们某一对对应边上的高之比为 12 

    【分析】根据相似三角形的性质求出相似比,得到对应边上的高之比.

    【解答】解:∵两个相似三角形的周长比为12

    ∴两个相似三角形的相似比为12

    ∴它们某一对对应边上的高之比为12

    故答案为:12

    【点评】本题考查的是相似三角形的性质,相似三角形周长的比等于相似比、相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比.

    14.(2019秋•闵行区期末)如果两个相似三角形的相似比为23,两个三角形的周长的和是100cm,那么较小的三角形的周长为 40 cm

    【分析】根据相似三角形周长比等于相似比列式计算.

    【解答】解:设较小的三角形的周长为xcm,则较大的三角形的周长为(100xcm

    ∵两个相似三角形的相似比为23

    ∴两个相似三角形的周长比为23

    解得,x40

    故答案为:40

    【点评】本题考查的是相似三角形的性质,掌握相似三角形周长比等于相似比是解题的关键.

    15.(2019秋•松江区期末)若两个相似三角形的面积比为34,则它们的相似比为 2 

    【分析】根据相似三角形面积的比等于相似比的平方计算.

    【解答】解:∵两个相似三角形的面积比为34

    ∴它们的相似比为2

    故答案为:2

    【点评】本题考查的是相似三角形的性质,掌握相似三角形面积的比等于相似比的平方是解题的关键.

    16.(2019秋•黄浦区校级期中)两个相似三角形对应高的比为41,那么这两个相似三角形的面积比是 161 

    【分析】根据相似三角形的性质解答即可.

    【解答】解:∵两个相似三角形对应高的比为41

    ∴这两个相似三角形的相似比为41

    ∴这两个相似三角形的面积比为161

    故答案为:161

    【点评】本题考查的是相似三角形的性质,相似三角形面积的比等于相似比的平方,相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比.

    17.(2018秋•浦东新区期末)如果△ABC∽△DEF,且△ABC的面积为2cm2,△DEF的面积为8cm2,那么△ABC与△DEF相似比为 12 

    【分析】根据题意求出△ABC与△DEF的面积比,根据相似三角形的性质解答.

    【解答】解:△ABC的面积为2cm2,△DEF的面积为8cm2

    ∴△ABC与△DEF的面积比为14

    ∵△ABC∽△DEF

    ∴△ABC与△DEF相似比为12

    故答案为:12

    【点评】本题考查的是相似三角形的性质,掌握相似三角形的面积比等于相似比的平方是解题的关键.

    18.(2021秋•浦东新区校级月考)两个相似三角形的面积之比为14,小三角形的周长为4,则另一个三角形的周长为 8 

    【分析】根据相似三角形的性质:相似三角形的周长的比等于相似比,面积的比等于相似比的平方,据此即可求解.

    【解答】解:设另一个三角形的周长为x,则4x

    解得:x8

    故答案是:8

    【点评】本题考查对相似三角形性质的理解.

    1)相似三角形周长的比等于相似比;

    2)相似三角形面积的比等于相似比的平方;

    3)相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比.

    能力提升

    一.选择题(共1小题)

    1.(2018秋•浦东新区月考)已知两个相似三角形一组对应高分别是155,面积之差为80,则较大三角形的面积为(  )

    A90 B180 C270 D3600

    【分析】根据相似三角形的面积比等于相似比的平方,设出两个相似三角形的面积,再根据二者面积的差为80列出方程解答即可.

    【解答】解:∵两个相似三角形的一组对应高的长分别为155

    ∴两三角形的相似比为31

    ∴其面积比为321291

    ∴设两相似三角形的面积分别为9xx

    根据题意列方程得,9xx80

    x10

    则较大的三角形的面积为90

    故选:A

    【点评】此题考查了“相似三角形的面积比等于相似比的平方”,根据一组对应高的长分别为155,求出面积比是解题的关键.

    二.填空题(共10小题)

    2.(2021秋•宝山区期中)已知△ABC∽△DEF,它们的周长分别为2015,且DE6,那么DE的对应边AB的长是  8 

    【分析】根据相似三角形的性质得出,求出,根据已知得出AB+BC+AC20DE+EF+DF15,代入后得出,再求出AB即可.

    【解答】解:∵△ABC∽△DEF

    ∵△ABC的周长是20,△DEF的周长是15

    AB+BC+AC20DE+EF+DF15

    DE6

    AB8

    故答案为:8

    【点评】本题考查了相似三角形的性质,能熟记相似三角形的性质是解此题的关键.

    3.(2021秋•松江区月考)两个相似三角形的对应中线的比为34,那么它们的周长比是 34 

    【分析】先根据相似三角形的对应中线的比为34得出其相似比,再根据相似三角形的性质即可得出结论.

    【解答】解:∵两个相似三角形的对应中线的比为34

    ∴其相似比等于34

    ∴它们的周长比是34

    故答案为34

    【点评】本题考查的是相似三角形的性质,熟知相似三角形周长的比等于相似比是解答此题的关键.

    4.(2019秋•嘉定区期末)如果将一个三角形保持形状不变但周长扩大为原三角形周长的9倍,那么扩大后的三角形的面积为原三角形面积的 81 倍.

    【分析】根据相似三角形的面积的比等于相似比的平方,据此即可求解.

    【解答】解:如果将一个三角形保持形状不变但周长扩大为原三角形周长的9倍,那么扩大后的三角形的面积为原三角形面积的81倍,

    故答案为:81

    【点评】本题考查对相似三角形性质的理解.

    1)相似三角形周长的比等于相似比;

    2)相似三角形面积的比等于相似比的平方;

    3)相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比.

    5.(2019秋•静安区期末)如果两个相似三角形的对应边的比是45,那么这两个三角形的面积比是 1625 

    【分析】根据相似三角形的面积的比等于相似比的平方,据此即可求解.

    【解答】解:两个相似三角形面积的比是(4521625

    故答案为:1625

    【点评】本题考查对相似三角形性质的理解.

    1)相似三角形周长的比等于相似比;

    2)相似三角形面积的比等于相似比的平方;

    3)相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比.

    6.(2022春•普陀区校级期末)如图,梯形ABCD中,ADBC,对角线ACBD交于OSAOD4SBOC6,则S梯形ABCD 10+4 

    【分析】ADBC,得出△ADO∽△CBO,由相似三角形的性质结合“同高的三角形的面积比等于底的比”求出,进而求出梯形ABCD的面积.

    【解答】解:∵ADBC

    ∴∠DAO=∠BCO,∠ADO=∠CBO

    ∴△ADO∽△CBO

    SAOD4SBOC6

    S梯形ABCDSAOD+SAOB+SDOC+SBOC4+2+2+610+4

    故答案为:10+4

    【点评】本题考查了相似三角形的判定与性质,梯形,掌握相似三角形的性质,“同高的三角形的面积比等于底的比”是解决问题的关键.

    7.(2017秋•长宁区期末)已知△ABC与△DEF相似,且△ABC与△DEF的相似比为23,若△DEF的面积为36,则△ABC的面积等于  16 

    【分析】直接利用相似三角形面积比等于相似比的平方得出两三角形面积比,进而得出答案.

    【解答】解:∵△ABC∽△DEF,相似比为23

    ∴△ABC的面积与△DEF的面积比为:49

    ∵△DEF的面积为36

    ∴△ABC的面积为16

    故答案为16

    【点评】此题主要考查了相似三角形的性质,正确得出三角形的面积比是解题关键.

    8.(2016秋•宝山区期末)如果两个相似三角形的相似比为14,那么它们的面积比为 116 

    【分析】根据相似三角形的性质:相似三角形的面积比等于相似比的平方即可解得.

    【解答】解:∵两个相似三角形的相似比为14

    ∴它们的面积比为116

    故答案为116

    【点评】本题考查对相似三角形性质的理解.(1)相似三角形周长的比等于相似比;(2)相似三角形面积的比等于相似比的平方;(3)相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比.

    9.(2019秋•虹口区校级月考)若△ABC∽△DEF,且相似比是23,它们周长之和是40,则△ABC的周长是 16 

    【分析】根据相似三角形的性质得△ABC的周长:△DEF的周长=23,然后把它们周长之和是4040代入可计算出△ABC的周长.

    【解答】解:∵△ABC与△DEF的相似比为23

    ∴△ABC的周长:△DEF的周长=23

    ∴△ABC的周长=×4016

    故答案为:16

    【点评】本题考查了相似三角形的性质:相似三角形的对应角相等,对应边的比相等.相似三角形(多边形)的周长的比等于相似比;相似三角形的对应线段(对应中线、对应角平分线、对应边上的高)的比也等于相似比.相似三角形的面积的比等于相似比的平方.

    10.(2018秋•青浦区期末)两个相似三角形的相似比为13,则它们周长的比为 13 

    【分析】由两个相似三角形的相似比为13,根据相似三角形周长的比等于相似比,即可求得答案.

    【解答】解:∵两个相似三角形的相似比为13

    ∴它们的周长比为:13

    故答案为:13

    【点评】此题考查了相似三角形的性质.此题比较简单,注意掌握相似三角形周长的比等于相似比定理的应用是解此题的关键.

    11.(2021秋•静安区校级期中)如果两个相似三角形的周长的比等于13,那么它们的面积的比等于 19 

    【分析】由两个相似三角形的周长的比等于14,即可求得它们的相似比,根据相似三角形的面积比等于相似比的平方,即可求得它们的面积的比.

    【解答】解:∵两个相似三角形的周长的比等于13

    ∴它们的相似比为13

    ∴它们的面积的比等于19

    故答案为:19

    【点评】此题考查了相似三角形的性质.注意相似三角形的面积比等于相似比的平方,相似三角形的对应高线、角平分线、中线的比等于相似比.

     

     


     

    相关课件

    初中数学沪教版 (五四制)九年级上册24.6 实数与向量相乘精品教学作业课件ppt: 这是一份初中数学沪教版 (五四制)九年级上册24.6 实数与向量相乘精品教学作业课件ppt,文件包含246《实数与向量相乘》第2课时教材配套课件pptx、246《实数与向量相乘》第2课时作业解析版docx、246《实数与向量相乘》第2课时作业原卷版docx等3份课件配套教学资源,其中PPT共14页, 欢迎下载使用。

    初中数学沪教版 (五四制)九年级上册24.6 实数与向量相乘精品教学作业ppt课件: 这是一份初中数学沪教版 (五四制)九年级上册24.6 实数与向量相乘精品教学作业ppt课件,文件包含246《实数与向量相乘》第1课时教材配套课件pptx、246《实数与向量相乘》第1课时作业解析版docx、246《实数与向量相乘》第1课时作业原卷版docx等3份课件配套教学资源,其中PPT共16页, 欢迎下载使用。

    初中数学沪教版 (五四制)九年级上册24.5 相似三角形的性质精品教学作业课件ppt: 这是一份初中数学沪教版 (五四制)九年级上册24.5 相似三角形的性质精品教学作业课件ppt,文件包含245《相似三角形的性质》第4课时作业解析版docx、245《相似三角形的性质》第4课时教材配套课件pptx、245《相似三角形的性质》第4课时作业原卷版docx等3份课件配套教学资源,其中PPT共15页, 欢迎下载使用。

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        沪教版五四制数学九年级上册24.5《相似三角形的性质》(第2课时)精品教学课件+作业(含答案)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map