专题41 定比点差法、齐次化、极点极线问题、蝴蝶问题-新高考数学大一轮复习讲义之方法技巧与题型全归纳(新高考专用)
展开专题41 定比点差法、齐次化、极点极线问题、蝴蝶问题
【题型归纳目录】
题型一:定比点差法
题型二:齐次化
题型三:极点极线问题
题型四:蝴蝶问题
【典例例题】
题型一:定比点差法
例1.已知椭圆()的离心率为,过右焦点且斜率为()的直线与相交于,两点,若,求
例2.已知,过点的直线交椭圆于,(可以重合),求取值范围.
例3.已知椭圆的左右焦点分别为,,,,是椭圆上的三个动点,且,若,求的值.
题型二:齐次化
例4.已知抛物线,过点的直线与抛物线交于P,Q两点,为坐标原点.证明:.
例5.如图,椭圆,经过点,且斜率为的直线与椭圆交于不同的两点P,Q(均异于点,证明:直线AP与AQ的斜率之和为2.
例6.已知椭圆,设直线不经过点且与相交于A,B两点.若直线与直线的斜率的和为,证明:直线过定点.
题型三:极点极线问题
例7.已知椭圆M:(a>b>0)过A(-2,0),B(0,1)两点.
(1)求椭圆M的离心率;
(2)设椭圆M的右顶点为C,点P在椭圆M上(P不与椭圆M的顶点重合),直线AB与直线CP交于点Q,直线BP交x轴于点S,求证:直线SQ过定点.
例8.若双曲线与椭圆共顶点,且它们的离心率之积为.
(1)求椭圆C的标准方程;
(2)若椭圆C的左、右顶点分别为,,直线l与椭圆C交于P、Q两点,设直线与的斜率分别为,,且.试问,直线l是否过定点?若是,求出定点的坐标;若不是,请说明理由.
例9.如图,椭圆E:的离心率是,过点P(0,1)的动直线与椭圆相交于A,B两点,当直线平行与轴时,直线被椭圆E截得的线段长为.
(1)求椭圆E的方程;
(2)在平面直角坐标系中,是否存在与点P不同的定点Q,使得恒成立?若存在,求出点Q的坐标;若不存在,请说明理由.
变式1.已知A、B分别为椭圆E:(a>1)的左、右顶点,G为E的上顶点,,P为直线x=6上的动点,PA与E的另一交点为C,PB与E的另一交点为D.
(1)求E的方程;
(2)证明:直线CD过定点.
变式2.已知椭圆:的左焦点为,且过点.
(1)求椭圆的标准方程;
(2)已知,分别为椭圆的左、右顶点,为直线上任意一点,直线,分别交椭圆于不同的两点,.求证:直线恒过定点,并求出定点坐标.
变式3.设椭圆过点,且左焦点为.
(1)求椭圆的方程;
(2)当过点的动直线与椭圆相交于两不同点,时,在线段上取点,且满足,证明:点总在某定直线上.
题型四:蝴蝶问题
例10.在平面直角坐标系中,已知圆,点,是圆上任意一点,线段的垂直平分线与半径相交于点,设点的轨迹为曲线。
(1)求曲线的方程;
(2)若,设过点的直线与曲线分别交于点,其中,求证:直线必过轴上的一定点。(其坐标与无关)
例11.已知椭圆的左、右顶点分别为点,,且,椭圆离心率为.
(1)求椭圆的方程;
(2)过椭圆的右焦点,且斜率不为的直线交椭圆于,两点,直线,的交于点,求证:点在直线上.
例12.已知椭圆C:+=1(a>b>0)的左、右顶点分别为A,B,离心率为,点P为椭圆上一点.
(1)求椭圆C的标准方程;
(2)如图,过点C(0,1)且斜率大于1的直线l与椭圆交于M,N两点,记直线AM的斜率为k1,直线BN的斜率为k2,若k1=2k2,求直线l斜率的值.
变式4.如图,为坐标原点,椭圆()的焦距等于其长半轴长,为椭圆的上、下顶点,且
(1)求椭圆的方程;
(2)过点作直线交椭圆于异于的两点,直线交于点.求证:点的纵坐标为定值3.
变式5.已知点在椭圆:上,为坐标原点,直线:的斜率与直线的斜率乘积为
(1)求椭圆的方程;
(2)不经过点的直线:(且)与椭圆交于,两点,关于原点的对称点为(与点不重合),直线,与轴分别交于两点,,求证:.
变式6.椭圆()的左、右焦点分别为,在椭圆上,的周长为,面积的最大值为2.
(1)求椭圆的方程;
(2)直线()与椭圆交于,连接,并延长交椭圆于,连接,探索与的斜率之比是否为定值并说明理由.
专题39 圆锥曲线中的定点、定值问题-新高考数学大一轮复习讲义之方法技巧与题型全归纳(新高考专用): 这是一份专题39 圆锥曲线中的定点、定值问题-新高考数学大一轮复习讲义之方法技巧与题型全归纳(新高考专用),文件包含专题39圆锥曲线中的定点定值问题解析版docx、专题39圆锥曲线中的定点定值问题原卷版docx等2份试卷配套教学资源,其中试卷共84页, 欢迎下载使用。
专题39 圆锥曲线中的定点、定值问题-新高考数学大一轮复习讲义之方法技巧与题型全归纳(新高考专用): 这是一份专题39 圆锥曲线中的定点、定值问题-新高考数学大一轮复习讲义之方法技巧与题型全归纳(新高考专用),文件包含专题39圆锥曲线中的定点定值问题解析版docx、专题39圆锥曲线中的定点定值问题原卷版docx等2份试卷配套教学资源,其中试卷共84页, 欢迎下载使用。
专题32 一类与斜率和、差、商、积问题的探究-新高考数学大一轮复习讲义之方法技巧与题型全归纳(新高考专用): 这是一份专题32 一类与斜率和、差、商、积问题的探究-新高考数学大一轮复习讲义之方法技巧与题型全归纳(新高考专用),文件包含专题32一类与斜率和差商积问题的探究解析版docx、专题32一类与斜率和差商积问题的探究原卷版docx等2份试卷配套教学资源,其中试卷共62页, 欢迎下载使用。