所属成套资源:中考一轮复习(数学)
- 聚焦中考第三章12讲课件PPT 课件 0 次下载
- 聚焦中考第一章第1讲课件PPT 课件 1 次下载
- 聚焦中考第一章第2讲 课件PPT 课件 1 次下载
- 聚焦中考第一章第3讲课件PPT 课件 1 次下载
- 聚焦中考第一章第5讲 课件PPT 课件 1 次下载
聚焦中考第一章第4讲课件PPT
展开
这是一份聚焦中考第一章第4讲课件PPT,共37页。PPT课件主要包含了要点梳理,B≠0,B=0,A=0且B≠0,分式的性质,x-1,分式的四则混合运算,分式方程的解法,x=1等内容,欢迎下载使用。
同一个不等于零的整式
4.最简分式如果一个分式的分子与分母没有公因式,那么这个分式叫做最简分式.5.分式的约分、通分把分式中分子与分母的公因式约去,这种变形叫做约分,约分的根据是分式的基本性质.把几个异分母分式化为与原分式的值相等的同分母分式,这种变形叫做分式的通分,通分的根据是分式的基本性质.通分的关键是确定几个分式的最简公分母.
6.分式的混合运算在分式的混合运算中,应先算乘方,再将除法化为乘法,进行约分化简,最后进行加减运算.若有括号,先算括号里面的.灵活运用运算律,运算结果必须是最简分式或整式.7.解分式方程,其思路是去分母转化为整式方程,要特别注意验根.使分母为0的未知数的值是增根,需舍去.
一个思想类比是一种在不同对象之间,或者在事物与事物之间,根据它们某些相似之处进行比较,通过联想和预测,推出它们在其他方面也可能相似,从而去建立猜想和发现规律的方法.通过类比可以发现新旧知识的相同点,利用已有的知识来认识新知识,分式与分数有许多类似的地方,因此在分式的学习中,要注意与分数进行类比学习理解.
两个技巧(1)分式运算中的常用技巧分式运算题型多,方法活,要根据特点灵活求解.如:①分组通分;②分步通分;③先“分”后“通”;④重新排序;⑤整体通分;⑥化积为差,裂项相消.
(2)分式求值中的常用技巧分式求值可根据所给条件和求值式的特征进行适当的变形、转化.主要有以下技巧:①整体代入法;②参数法;③平方法;④代入法;⑤倒数法.
分式的概念,求字母的取值范围
【点评】 (1)分式有意义就是使分母不为0,解不等式即可求出,有时还要考虑二次根式有意义;(2)首先求出使分子为0的字母的值,再检验这个字母的值是否使分母的值为0,当它使分母的值不为0时,这就是所要求的字母的值.
【点评】 (1)分式的基本性质是分式变形的理论依据,所有分式变形都不得与此相违背,否则分式的值改变;(2)将分式化简,即约分,要先找出分子、分母的公因式,如果分子、分母是多项式,要先将它们分别分解因式,然后再约分,约分应彻底;(3)巧用分式的性质,可以解决某些较复杂的计算题,可应用逆向思维,把要求的算式和已知条件由两头向中间凑的方式来求代数式的值.
【点评】 准确、灵活、简便地运用法则进行化简,注意在取x的值时,要考虑分式有意义,不能取使分式无意义的0与±2.
解:去分母,得x(x-1)-4=x2-1,去括号,得x2-x-4=x2-1,解得x=-3,经检验x=-3是分式方程的解
【点评】 (1)按照基本步骤解分式方程,其关键是确定各分式的最简公分母.若分母为多项式时,应首先进行分解因式.将分式方程转化为整式方程,乘最简公分母时,应乘原分式方程的每一项,不要漏乘常数项;(2)检验是否产生增根:分式方程的增根是分式方程去分母后整式方程的某个根,但因为它使分式方程的某些分母为零,故应是原方程的增根,须舍去.
答题思路第一步:去分母,把分式方程转化为整式方程;第二步:通过原分式方程的各个分母来确定分式方程的增根;第三步:把增根代入到转化得到的整式方程中,以确定分式方程中某些系数的值;第四步:考虑方程根的性质,以确定分式方程中某些系数的值;第五步:反思回顾,查看关键点、易错点,完善解题步骤.
剖析(1)分式中的分母不能为零,这是同学们熟知的,但在解题时,往往忽略题目中的这一隐含条件,从而导致解题错误;(2)利用分式的基本性质进行恒等变形时,应注意分子与分母同乘或同除以的整式的值不能是零;
(3)解分式方程为什么要检验?因为用各分母的最简公分母去乘方程的两边时,不能肯定所得方程与原方程同解.如果最后x取值使这个最简公分母不为零,则这个步骤符合方程同解原理,这个取值就是方程的解;否则,不能保证新方程与原方程同解.从另一角度看,既然使各分母的最简公分母为零,则必使某个分母为零,该分式则无意义,原方程不可能成立,这个取值就不是原方程的解.
相关课件
这是一份聚焦中考第四章15讲 课件PPT,共37页。PPT课件主要包含了要点梳理,所要考察对象,每一个考察对象,一部分个体,个体的数目,中位数,选择合适的调查方式,方差的计算等内容,欢迎下载使用。
这是一份聚焦中考第二章第7节课件PPT,共39页。PPT课件主要包含了第7讲一元二次方程,要点梳理,一个未知数,直接开平方法,因式分解法,配方法,公式法,不相等,一元二次方程的解法,与几何问题的综合等内容,欢迎下载使用。
这是一份聚焦中考第二章第9节 课件PPT,共33页。PPT课件主要包含了要点梳理,不等号,不等式的解,不等式的解集,不等式的基本性质,不等式两边都,同一个数或同一个整,不等式仍然成立若,同一个,等式仍然成立若等内容,欢迎下载使用。