所属成套资源:中考一轮复习(数学)
- 聚焦中考第三章第11讲课件PPT 课件 0 次下载
- 聚焦中考第三章14讲课件PPT 课件 0 次下载
- 聚焦中考第三章13讲课件PPT 课件 0 次下载
- 聚焦中考第三章12讲课件PPT 课件 0 次下载
- 聚焦中考第一章第1讲课件PPT 课件 1 次下载
聚焦中考第三章第10讲课件PPT
展开
这是一份聚焦中考第三章第10讲课件PPT,共37页。PPT课件主要包含了要点梳理,自变量,解析法,列表法,图象法,x≤3且x≠-2,由自变量取值求函数值等内容,欢迎下载使用。
第10讲 函数及其图象
1.常量、变量在某一过程中,保持数值不变的量叫做 ;可以取不同数值的量叫做 .2.函数一般地,设在一个变化过程中有两个变量x与y,如果对于x的每一个确定的值,y都有唯一确定的值与它对应,那么就说x是 ,y是x的 .
3.函数自变量取值范围由解析式给出的函数,自变量取值范围应使解析式有意义;对于实际意义的函数,自变量取值范围还应使实际问题有意义.
4.函数的图象和函数表示方法(1)函数的图象:一般地,对于一个函数,如果把自变量x与函数y的每对对应值分别作为点的横坐标与纵坐标,在坐标平面内描出这些点,用光滑曲线连接这些点所组成的图形,就是这个函数的图象.(2)画函数图象时应注意该函数的自变量的取值范围.(3)函数的表示法:① ;② ;③ .
紧抓两个变量函数中有两个变量,一个是自变量x,另一个是因变量y,这也说明了函数关系是某一过程中的两个变量之间的关系.在具体问题中,要结合实际意义确定变量.如:在路程问题中s=vt,当速度v是定值时,s与t是变量;当时间t是定值时,s与v是变量.
正确理解“唯一”函数概念中,“对于x的每一个值,y都有唯一确定的值与它对应”这句话,说明了两个变量之间的对应关系,对于x在取值范围内每取一个值,都有且只有一个y值与之对应,否则y就不是x的函数.对于“唯一性”可以从以下两方面理解:①从函数关系方面理解;②从图象方面理解.
两种思想方法(1)函数思想研究一个实际问题时,首先从问题中抽象出特定的函数关系,转化为“函数模型”,然后利用函数的性质得出结论,最后把结论应用到实际问题中去,从而得到实际问题的研究结果.(2)数形结合思想数形结合,直观形象,为分析问题和解决问题创造了有利条件,如用函数图象解答相关问题是典型的数形结合思想的应用.
2.(2014·重庆)2014年5月10日上午,小华同学接到通知,她的作文通过了《我的中国梦》征文选拔,需尽快上交该作文的电子文稿.接到通知后,小华立即在电脑上打字录入这篇文稿,录入一段时间后因事暂停,过了一小会,小华继续录入并加快了录入速度,直至录入完成.设从录入文稿开始所经过的时间为x,录入字数为y,下面能反映y与x的函数关系的大致图象是( )
3.(2014·黄石)如图,AB是半圆O的直径,点P从点A出发,沿半圆弧AB顺时针方向匀速移动至点B,运动时间为t,△ABP的面积为S,则下列图象能大致刻画S与t之间的关系的是( )
4.(2014·河南)如图,在Rt△ABC中,∠C=90°,AC=1 cm,BC=2 cm,点P从点A出发,以1 cm/s的速度沿折线AC→CB→BA运动,最终回到点A,设点P的运动时间为x(s),线段AP的长度为y(cm),则能够反映y与x之间函数关系的图象大致是( )
5.(2014·黄冈)已知:在△ABC中,BC=10,BC边上的高h=5,点E在边AB上,过点E作EF∥BC,交AC边于点F.点D为BC上一点,连接DE,DF.设点E到BC的距离为x,则△DEF的面积S关于x的函数图象大致为( )
确定自变量的取值范围
【点评】 代数式有意义的条件问题:(1)若解析式是整式,则自变量取全体实数;(2)若解析式是分式,则自变量取使分母不为0的全体实数;(3)若解析式是偶次根式,则自变量只取使被开方数为非负数的全体实数;(4)若解析式含有零指数或负整数指数幂,则自变量应是使底数不等于0的全体实数;(5)若解析式是由多个条件限制,必须首先求出式子中各部分自变量的取值范围,然后再取其公共部分,此类问题要特别注意,只能就已知的解析式进行求解,而不能进行化简变形,特别是不能轻易地乘或除以含自变量的因式.
【例2】 已知y=-2x+4,且-1≤x<3,求函数值y的取值范围.
【点评】 结合不等式的性质,运用代入法由自变量的具体值或取值范围,可确定函数的对应值或范围.
2.(2013·珠海)已知函数y=3x的图象经过点A(-1,y1),点B(-2,y2),则y1 y2.(填“>”“<”或“=”)
确定实际背景下的函数关系式
【例3】 (2013·丽水)如图,科技小组准备用材料围建一个面积为60 m2的矩形科技园ABCD,其中一边AB靠墙,墙长为12 m,设AD的长为x m,DC的长为y m.(1)求y与x之间的函数关系式;(2)若围成矩形科技园ABCD的三边材料总长不超过26 m,材料AD和DC的长都是整米数,求出满足条件的所有围建方案.
观察图象,求解实际问题
【例4】 (2014·绍兴)已知甲、乙两地相距90 km,A,B两人沿同一公路从甲地出发到乙地,A骑摩托车,B骑电动车,图中DE,OC分别表示A,B离开甲地的路程s(km)与时间t(h)的函数关系的图象,根据图象解答下列问题.(1)A比B后出发几个小时?B的速度是多少?(2)在B出发后几小时,两人相遇?
【点评】 要学会阅读图象,正确理解图象中点的坐标的实际意义,由图象分析变量的变化趋势,从而确定实际情况.分析变量之间的关系、加深对图象表示函数的理解,进一步提高从图象中获取信息的能力,运用数形结合的思想观察图象求解.
4.(2014·哈尔滨)早晨,小刚沿着通往学校唯一的一条路(直路)上学,途中发现忘带饭盒,停下往家里打电话,妈妈接到电话后带上饭盒马上赶往学校,同时小刚返回,两人相遇后,小刚立即赶往学校,妈妈回家,15分钟妈妈到家,再经过3分钟小刚到达学校,小刚始终以100米/分的速度步行,小刚和妈妈的距离y(单位:米)与小刚打完电话后的步行时间t(单位:分)之间的函数关系如图,下列四种说法:①打电话时,小刚和妈妈的距离为1250米;②打完电话后,经过23分钟小刚到达学校;③小刚和妈妈相遇后,妈妈回家的速度为150米/分;④小刚家与学校的距离为2550米.其中正确的有( C )A.1个 B.2个 C.3个 D.4个
试题 (2012·义乌)周末,小明骑自行车从家里出发到野外郊游.从家出发0.5小时后到达甲地,游玩一段时间后按原速前往乙地.小明离家1小时20分钟后,妈妈驾车沿相同路线前往乙地,如图是他们离家的路程y(km)与小明离家时间x(h)的函数图象.已知妈妈驾车的速度是小明骑车速度的3倍.(1)求小明骑车的速度和在甲地游玩的时间;(2)小明从家出发多少小时后被妈妈追上?此时离家多远.(3)若妈妈比小明早10分钟到达乙地,求从家到乙地的路程.
审题视角 (1)认真阅读题干内容,理清数量关系;(2)分析图形提供的信息,从图形可看出函数是分段的;(3)建立函数模型,确定解决模型的方法.
答题思路解函数应用题的一般程序是:第一步:审题——弄清题意,分清条件和结论,理顺数量关系;第二步:建模——将文字语言转化成数学语言,用数学知识建立相应的数学模型;第三步:求模——求解数学模型,得到数学结论;第四步:还原——将用数学方法得到的结论还原为实际问题的意义;第五步:反思回顾——对于数学模型必须验证这个解对实际问题的合理性.
试题 矩形的周长是8 cm,设一边长为x(cm),另一边长为y(cm).(1)求y关于x的函数关系式;(2)在图中作出函数的图象.
错解解:(1)由题意,得2(x+y)=8,则y=4-x.(2)图象如下图:
正解解:(1)由题意,得2(x+y)=8,则y=4-x,其中0<x<4.(2)图象如图所示:
相关课件
这是一份聚焦中考第三章14讲课件PPT,共40页。PPT课件主要包含了第14讲函数的应用,要点梳理,一次函数相关应用题,二次函数相关应用题,函数的综合应用等内容,欢迎下载使用。
这是一份聚焦中考第三章12讲课件PPT,共39页。PPT课件主要包含了要点梳理,三象限,四象限,反比例函数图象的确定等内容,欢迎下载使用。
这是一份聚焦中考第四章15讲 课件PPT,共37页。PPT课件主要包含了要点梳理,所要考察对象,每一个考察对象,一部分个体,个体的数目,中位数,选择合适的调查方式,方差的计算等内容,欢迎下载使用。