|试卷下载
终身会员
搜索
    上传资料 赚现金
    四川省泸州市2021-2023三年中考数学真题分类汇编-02解答题(提升题)知识点分类
    立即下载
    加入资料篮
    四川省泸州市2021-2023三年中考数学真题分类汇编-02解答题(提升题)知识点分类01
    四川省泸州市2021-2023三年中考数学真题分类汇编-02解答题(提升题)知识点分类02
    四川省泸州市2021-2023三年中考数学真题分类汇编-02解答题(提升题)知识点分类03
    还剩27页未读, 继续阅读
    下载需要30学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    四川省泸州市2021-2023三年中考数学真题分类汇编-02解答题(提升题)知识点分类

    展开
    这是一份四川省泸州市2021-2023三年中考数学真题分类汇编-02解答题(提升题)知识点分类,共30页。试卷主要包含了两点,三点,其对称轴为x=2,两点,直线x=3与x轴交于点C等内容,欢迎下载使用。

    四川省泸州市2021-2023三年中考数学真题分类汇编-02解答题(提升题)知识点分类
    一.二元一次方程组的应用(共1小题)
    1.(2021•泸州)某运输公司有A、B两种货车,3辆A货车与2辆B货车一次可以运货90吨,5辆A货车与4辆B货车一次可以运货160吨.
    (1)请问1辆A货车和1辆B货车一次可以分别运货多少吨?
    (2)目前有190吨货物需要运输,该运输公司计划安排A、B两种货车将全部货物一次运完(A、B两种货车均满载),其中每辆A货车一次运货花费500元,每辆B货车一次运货花费400元.请你列出所有的运输方案,并指出哪种运输方案费用最少.
    二.分式方程的应用(共1小题)
    2.(2023•泸州)端午节是中国传统节日,人们有吃粽子的习俗.今年端午节来临之际,某商场预测A粽子能够畅销.根据预测,每千克A粽子节前的进价比节后多2元,节前用240元购进A粽子的数量比节后用相同金额购进的数量少4千克.根据以上信息,解答下列问题:
    (1)该商场节后每千克A粽子的进价是多少元?
    (2)如果该商场在节前和节后共购进A粽子400千克,且总费用不超过4600元,并按照节前每千克20元,节后每千克16元全部售出,那么该商场节前购进多少千克A粽子获得利润最大?最大利润是多少?
    三.反比例函数与一次函数的交点问题(共1小题)
    3.(2021•泸州)一次函数y=kx+b(k≠0)的图象与反比例函数y=的图象相交于A(2,3),B(6,n)两点.
    (1)求一次函数的解析式;
    (2)将直线AB沿y轴向下平移8个单位后得到直线l,l与两坐标轴分别相交于M,N,与反比例函数的图象相交于点P,Q,求的值.
    四.反比例函数综合题(共2小题)
    4.(2022•泸州)如图,直线y=﹣x+b与反比例函数y=的图象相交于点A,B,已知点A的纵坐标为6.
    (1)求b的值;
    (2)若点C是x轴上一点,且△ABC的面积为3,求点C的坐标.

    5.(2023•泸州)如图,在平面直角坐标系xOy中,直线l:y=kx+2与x,y轴分别相交于点A,B,与反比例函数y=(x>0)的图象相交于点C,已知OA=1,点C的横坐标为2.
    (1)求k,m的值;
    (2)平行于y轴的动直线与l和反比例函数的图象分别交于点D,E,若以B,D,E,O为顶点的四边形为平行四边形,求点D的坐标.

    五.二次函数综合题(共3小题)
    6.(2023•泸州)如图,在平面直角坐标系xOy中,已知抛物线y=ax2+2x+c与坐标轴分别相交于点A,B,C(0,6)三点,其对称轴为x=2.
    (1)求该抛物线的解析式;
    (2)点F是该抛物线上位于第一象限的一个动点,直线AF分别与y轴,直线BC交于点D,E.
    ①当CD=CE时,求CD的长;
    ②若△CAD,△CDE,△CEF的面积分别为S1,S2,S3,且满足S1+S3=2S2,求点F的坐标.

    7.(2021•泸州)如图,在平面直角坐标系xOy中,抛物线y=﹣x2+x+4与两坐标轴分别相交于A,B,C三点.
    (1)求证:∠ACB=90°;
    (2)点D是第一象限内该抛物线上的动点,过点D作x轴的垂线交BC于点E,交x轴于点F.
    ①求DE+BF的最大值;
    ②点G是AC的中点,若以点C,D,E为顶点的三角形与△AOG相似,求点D的坐标.

    8.(2022•泸州)如图,在平面直角坐标系xOy中,已知抛物线y=ax2+x+c经过A(﹣2,0),B(0,4)两点,直线x=3与x轴交于点C.
    (1)求a,c的值;
    (2)经过点O的直线分别与线段AB,直线x=3交于点D,E,且△BDO与△OCE的面积相等,求直线DE的解析式;
    (3)P是抛物线上位于第一象限的一个动点,在线段OC和直线x=3上是否分别存在点F,G,使B,F,G,P为顶点的四边形是以BF为一边的矩形?若存在,求出点F的坐标;若不存在,请说明理由.

    六.平行四边形的性质(共1小题)
    9.(2022•泸州)如图,E,F分别是▱ABCD的边AB,CD上的点,已知AE=CF.求证:DE=BF.

    七.切线的性质(共2小题)
    10.(2021•泸州)如图,△ABC是⊙O的内接三角形,过点C作⊙O的切线交BA的延长线于点F,AE是⊙O的直径,连接EC.
    (1)求证:∠ACF=∠B;
    (2)若AB=BC,AD⊥BC于点D,FC=4,FA=2,求AD•AE的值.

    11.(2023•泸州)如图,AB是⊙O的直径,AB=2,⊙O的弦CD⊥AB于点E,CD=6.过点C作⊙O的切线交AB的延长线于点F,连接BC.
    (1)求证:BC平分∠DCF;
    (2)G为上一点,连接CG交AB于点H,若CH=3GH,求BH的长.

    八.圆的综合题(共1小题)
    12.(2022•泸州)如图,点C在以AB为直径的⊙O上,CD平分∠ACB交⊙O于点D,交AB于点E,过点D作⊙O的切线交CO的延长线于点F.
    (1)求证:FD∥AB;
    (2)若AC=2,BC=,求FD的长.

    九.解直角三角形的应用-仰角俯角问题(共1小题)
    13.(2023•泸州)如图,某数学兴趣小组为了测量古树DE的高度,采用了如下的方法:先从与古树底端D在同一水平线上的点A出发,沿斜面坡度为i=2:的斜坡AB前进20m到达点B,再沿水平方向继续前进一段距离后到达点C.在点C处测得古树DE的顶端E的俯角为37°,底部D的俯角为60°,求古树DE的高度(参考数据:sin37°≈,cos37°≈,tan37°≈,计算结果用根号表示,不取近似值).

    一十.解直角三角形的应用-方向角问题(共2小题)
    14.(2022•泸州)如图,海中有两小岛C,D,某渔船在海中的A处测得小岛C位于东北方向,小岛D位于南偏东30°方向,且A,D相距10nmile.该渔船自西向东航行一段时间后到达点B,此时测得小岛C位于西北方向且与点B相距8nmile.求B,D间的距离(计算过程中的数据不取近似值).

    15.(2021•泸州)如图,A,B是海面上位于东西方向的两个观测点,有一艘海轮在C点处遇险发出求救信号,此时测得C点位于观测点A的北偏东45°方向上,同时位于观测点B的北偏西60°方向上,且测得C点与观测点A的距离为25海里.
    (1)求观测点B与C点之间的距离;
    (2)有一艘救援船位于观测点B的正南方向且与观测点B相距30海里的D点处,在接到海轮的求救信号后立即前往营救,其航行速度为42海里/小时,求救援船到达C点需要的最少时间.


    四川省泸州市2021-2023三年中考数学真题分类汇编-02解答题(提升题)知识点分类
    参考答案与试题解析
    一.二元一次方程组的应用(共1小题)
    1.(2021•泸州)某运输公司有A、B两种货车,3辆A货车与2辆B货车一次可以运货90吨,5辆A货车与4辆B货车一次可以运货160吨.
    (1)请问1辆A货车和1辆B货车一次可以分别运货多少吨?
    (2)目前有190吨货物需要运输,该运输公司计划安排A、B两种货车将全部货物一次运完(A、B两种货车均满载),其中每辆A货车一次运货花费500元,每辆B货车一次运货花费400元.请你列出所有的运输方案,并指出哪种运输方案费用最少.
    【答案】见试题解答内容
    【解答】解:(1)设1辆A货车一次可以运货x吨,1辆B货车一次可以运货y吨,
    根据题意得:,
    解得:,
    答:1辆A货车一次可以运货20吨,1辆B货车一次可以运货15吨;
    (2)方法一:设A货车运输m吨,则B货车运输(190﹣m)吨,设总费用为w元,
    则:w=500×+400×
    =25m+
    =25m﹣m+
    =﹣m+,
    ∵﹣<0,
    ∴w随m的增大而减小.
    ∵A、B两种货车均满载,
    ∴,都是大于或等于0的整数,
    ∴0≤m≤190,
    当m=20时,不是整数;
    当m=40时,=10;
    当m=60时,不是整数;
    当m=80时,不是整数;
    当m=100时,=6;
    当m=120时,不是整数;
    当m=140时,不是整数;
    当m=160时,=2;
    当m=180时,不是整数;
    故符合题意的运输方案有三种:
    ①A货车40÷20=2辆,B货车10辆;
    ②A货车100÷20=5辆,B货车6辆;
    ③A货车160÷20=8辆,B货车2辆;
    ∵w随m的增大而减小,
    ∴费用越少,m越大,
    故方案③费用最少.
    方法二:设安排m辆A货车,则安排辆B货车,
    w=500m+400×=﹣m+,
    ∵=9.5,
    ∴0<m<10,
    ∵m,都为整数,
    ∴m=2,5,8,
    故符合题意的运输方案有三种:
    ①A货车2辆,B货车10辆;
    ②A货车5辆,B货车6辆;
    ③A货车8辆,B货车2辆;
    ∵﹣<0.
    ∴w随m的增大而减小,
    ∴费用越少,m越大,
    故方案③费用最少.
    二.分式方程的应用(共1小题)
    2.(2023•泸州)端午节是中国传统节日,人们有吃粽子的习俗.今年端午节来临之际,某商场预测A粽子能够畅销.根据预测,每千克A粽子节前的进价比节后多2元,节前用240元购进A粽子的数量比节后用相同金额购进的数量少4千克.根据以上信息,解答下列问题:
    (1)该商场节后每千克A粽子的进价是多少元?
    (2)如果该商场在节前和节后共购进A粽子400千克,且总费用不超过4600元,并按照节前每千克20元,节后每千克16元全部售出,那么该商场节前购进多少千克A粽子获得利润最大?最大利润是多少?
    【答案】(1)10元;
    (2)该商场节前购进300千克A粽子获得利润最大,最大利润是3000元.
    【解答】解:(1)设该商场节后每千克A粽子的进价为x元,
    根据题意,得,
    解得x=10或x=﹣12(舍去),
    经检验,x=10是原分式方程的根,且符合题意,
    答:该商场节后每千克A粽子的进价是10元;
    (2)设该商场节前购进m千克A粽子,总利润为w元,
    根据题意,得12m+10(400﹣m)≤4600,
    解得m≤300,
    w=(20﹣12)m+(16﹣10)(400﹣m)=2m+2400,
    ∵2>0,
    ∴w随着m增大而增大,
    当m=300时,w取得最大值,最大利润为2×300+2400=3000(元),
    答:该商场节前购进300千克A粽子获得利润最大,最大利润是3000元.
    三.反比例函数与一次函数的交点问题(共1小题)
    3.(2021•泸州)一次函数y=kx+b(k≠0)的图象与反比例函数y=的图象相交于A(2,3),B(6,n)两点.
    (1)求一次函数的解析式;
    (2)将直线AB沿y轴向下平移8个单位后得到直线l,l与两坐标轴分别相交于M,N,与反比例函数的图象相交于点P,Q,求的值.
    【答案】(1)y=﹣x+4;(2).
    【解答】解:(1)∵反比例函数y=的图象过点A(2,3),点B(6,n),
    ∴m=2×3=6,m=6n,
    ∴y=,n=1,
    ∴一次函数y=kx+b(k≠0)的图象过点A(2,3),点B(6,1),
    ∴,
    解得:,
    ∴一次函数的解析式为:y=﹣x+4;
    (2)∵直线AB沿y轴向下平移8个单位后得到直线l,
    ∴直线l的解析式为:y=﹣x+4﹣8=﹣x﹣4,
    当x=0时,y=﹣4,
    当y=0时,x=﹣8,
    ∴M(﹣8,0),N(0,﹣4),
    ∴OM=8,ON=4,
    ∴MN===4,
    联立,
    得:﹣x﹣4=,
    解得:x1=﹣2,x2=﹣6,
    将x1=﹣2,x2=﹣6代入y=得:y1=﹣3,y2=﹣1,
    经检验:和都是原方程组的解,
    ∴P(﹣6,﹣1),Q(﹣2,﹣3),
    如图,过点P作x轴的平行线,过点Q作y轴的平行线,两条平行线交于点C,
    则∠C=90°,C(﹣2,﹣1),
    ∴PC=﹣2﹣(﹣6)=4,CQ=﹣1﹣(﹣3)=2,
    ∴PQ===2,
    ∴==.

    四.反比例函数综合题(共2小题)
    4.(2022•泸州)如图,直线y=﹣x+b与反比例函数y=的图象相交于点A,B,已知点A的纵坐标为6.
    (1)求b的值;
    (2)若点C是x轴上一点,且△ABC的面积为3,求点C的坐标.

    【答案】(1)b=9;
    (2)点C(4,0)或(8,0).
    【解答】解:(1)∵点A在反比例函数y=上,且A的纵坐标为6,
    ∴点A(2,6),
    ∵直线y=﹣x+b经过点A,
    ∴6=﹣×2+b,
    ∴b=9;
    (2)如图,设直线AB与x轴的交点为D,

    设点C(a,0),
    ∵直线AB与x轴的交点为D,
    ∴点D(6,0),
    由题意可得:,
    ∴,,
    ∴点B(4,3),
    ∵S△ACB=S△ACD﹣S△BCD,
    ∴3=×CD×(6﹣3),
    ∴CD=2,
    ∴点C(4,0)或(8,0).
    5.(2023•泸州)如图,在平面直角坐标系xOy中,直线l:y=kx+2与x,y轴分别相交于点A,B,与反比例函数y=(x>0)的图象相交于点C,已知OA=1,点C的横坐标为2.
    (1)求k,m的值;
    (2)平行于y轴的动直线与l和反比例函数的图象分别交于点D,E,若以B,D,E,O为顶点的四边形为平行四边形,求点D的坐标.

    【答案】(1)k=2,m=12;
    (2)(,2+2)或(﹣1,2).
    【解答】解:(1)∵OA=1,
    ∴点A的坐标为(﹣1,0),
    则﹣k+2=0,
    解得:k=2,
    ∴直线l的解析式为y=2x+2,
    ∵点C在直线l上,点C的横坐标为2,
    ∴点C的纵坐标为2×2+2=6,
    ∴点C的坐标为(2,6),
    ∴m=2×6=12;
    (2)设点D的坐标为(n,2n+2),则点E的坐标为(n,),
    ∴DE=|2n+2﹣|,
    ∵OB∥DE,
    ∴当OB=DE时,以B,D,E,O为顶点的四边形为平行四边形,
    ∵直线y=2x+2与y轴交于点B,
    ∴OB=2,
    ∴|2n+2﹣|=2,
    当2n+2﹣=2时,n1=,n2=﹣(舍去),
    此时,点D的坐标为(,2+2),
    当2n+2﹣=﹣2时,n1=﹣1,n2=﹣﹣1(舍去),
    此时,点D的坐标为(﹣1,2),
    综上所述:以B,D,E,O为顶点的四边形为平行四边形时,点D的坐标为(,2+2)或(﹣1,2).
    五.二次函数综合题(共3小题)
    6.(2023•泸州)如图,在平面直角坐标系xOy中,已知抛物线y=ax2+2x+c与坐标轴分别相交于点A,B,C(0,6)三点,其对称轴为x=2.
    (1)求该抛物线的解析式;
    (2)点F是该抛物线上位于第一象限的一个动点,直线AF分别与y轴,直线BC交于点D,E.
    ①当CD=CE时,求CD的长;
    ②若△CAD,△CDE,△CEF的面积分别为S1,S2,S3,且满足S1+S3=2S2,求点F的坐标.

    【答案】(1)y=﹣x2+2x+6;
    (2)①8﹣2;②点F(4,6).
    【解答】解:(1)由题意得:,
    解得:,
    即抛物线的表达式为:y=﹣x2+2x+6;

    (2)令y=﹣x2+2x+6=0,则x=6或﹣2,
    即点A、B的坐标分别为:(﹣2,0)、(6,0);
    ①设点F(m,﹣m2+2m+6),
    由点A、F得,直线AF的表达式为:y=﹣(m﹣6)(x+2)①,
    当x=0时,y=﹣(m﹣6)(x+2)=6﹣m,即点D(0,6﹣m),
    则CD=6﹣6+m=m,
    由点B、C的坐标得,直线BC的表达式为:y=﹣x+6②,
    联立①②得:﹣(m﹣6)(x+2)=﹣x+6,
    解得:x=,则点E(,6﹣),
    由点C、E的坐标得,CE=,
    ∵CD=CE,即m=,
    解得:m=0(舍去)或8﹣2,
    则CD=m=8﹣2;
    ②过点E、F分别作x轴的垂线,垂足分别为点M、N,

    ∵△CAD,△CDE,△CEF同高,则其面积比为边的比,
    即==2,
    ∵OD∥EM∥FN,
    则,,
    则===2,
    即=2,
    整理得:3xE﹣xF=2,
    由①知,xE=,xF=m,
    则3×﹣m=2,
    解得:m=±4(舍去负值),
    经检验,m=4是方程的根,
    则点F(4,6).
    7.(2021•泸州)如图,在平面直角坐标系xOy中,抛物线y=﹣x2+x+4与两坐标轴分别相交于A,B,C三点.
    (1)求证:∠ACB=90°;
    (2)点D是第一象限内该抛物线上的动点,过点D作x轴的垂线交BC于点E,交x轴于点F.
    ①求DE+BF的最大值;
    ②点G是AC的中点,若以点C,D,E为顶点的三角形与△AOG相似,求点D的坐标.

    【答案】(1)证明见解答过程;
    (2)①9;
    ②(4,6)或(3,).
    【解答】解:(1)y=﹣x2+x+4中,令x=0得y=4,令y=0得x1=﹣2,x2=8,
    ∴A(﹣2,0),B(8,0),C(0,4),
    ∴OA=2,OB=8,OC=4,AB=10,
    ∴AC2=OA2+OC2=20,BC2=OB2+OC2=80,
    ∴AC2+BC2=100,
    而AB2=102=100,
    ∴AC2+BC2=AB2,
    ∴∠ACB=90°;
    (2)①设直线BC解析式为y=kx+b,将B(8,0),C(0,4)代入可得:,
    解得,
    ∴直线BC解析式为y=﹣x+4,
    设第一象限D(m,+m+4),则E(m,﹣m+4),
    ∴DE=(+m+4)﹣(﹣m+4)=﹣m2+2m,BF=8﹣m,
    ∴DE+BF=(﹣m2+2m)+(8﹣m)
    =﹣m2+m+8
    =﹣(m﹣2)2+9,
    ∴当m=2时,DE+BF的最大值是9;
    ②由(1)知∠ACB=90°,
    ∴∠CAB+∠CBA=90°,
    ∵DF⊥x轴于F,
    ∴∠FEB+∠CBA=90°,
    ∴∠CAB=∠FEB=∠DEC,
    (一)当A与E对应时,
    以点C,D,E为顶点的三角形与△AOG相似,只需=或=,
    而G为AC中点,A(﹣2,0),C(0,4),
    ∴G(﹣1,2),OA=2,AG=,
    由①知:DE=﹣m2+2m,E(m,﹣m+4),
    ∴CE==,
    当=时,=,解得m=4或m=0(此时D与C重合,舍去)
    ∴D(4,6),
    当=时,=,解得m=3或m=0(舍去),
    ∴D(3,),
    ∵在Rt△AOC中,G是AC中点,
    ∴OG=AG,
    ∴∠GAO=∠GOA,即∠CAB=∠GOA,
    ∴∠DEC=∠GOA,
    (二)当O与E对应时,
    以点C,D,E为顶点的三角形与△AOG相似,只需=或=,
    ∵OG=AG,
    ∴=与=答案相同,同理=与或=答案相同,
    综上所述,以点C,D,E为顶点的三角形与△AOG相似,则D的坐标为(4,6)或(3,).
    8.(2022•泸州)如图,在平面直角坐标系xOy中,已知抛物线y=ax2+x+c经过A(﹣2,0),B(0,4)两点,直线x=3与x轴交于点C.
    (1)求a,c的值;
    (2)经过点O的直线分别与线段AB,直线x=3交于点D,E,且△BDO与△OCE的面积相等,求直线DE的解析式;
    (3)P是抛物线上位于第一象限的一个动点,在线段OC和直线x=3上是否分别存在点F,G,使B,F,G,P为顶点的四边形是以BF为一边的矩形?若存在,求出点F的坐标;若不存在,请说明理由.

    【答案】(1);
    (2)y=﹣x;
    (3)点F的坐标为(2,0)或(,0).
    【解答】解:(1)把A(﹣2,0),B(0,4)两点代入抛物线y=ax2+x+c中得:
    解得:;
    (2)由(1)知:抛物线解析式为:y=﹣x2+x+4,
    设直线AB的解析式为:y=kx+b,
    则,解得:,
    ∴AB的解析式为:y=2x+4,
    设直线DE的解析式为:y=mx,
    ∴2x+4=mx,
    ∴x=,
    当x=3时,y=3m,
    ∴E(3,3m),
    ∵△BDO与△OCE的面积相等,CE⊥OC,
    ∴•3•(﹣3m)=•4•,
    ∴9m2﹣18m﹣16=0,
    ∴(3m+2)(3m﹣8)=0,
    ∴m1=﹣,m2=(舍),
    ∴直线DE的解析式为:y=﹣x;
    (3)存在,
    B,F,G,P为顶点的四边形是以BF为一边的矩形有两种情况:
    设P(t,﹣t2+t+4),
    ①如图1,过点P作PH⊥y轴于H,

    ∵四边形BPGF是矩形,
    ∴BP=FG,∠PBF=∠BFG=90°,
    ∴∠CFG+∠BFO=∠BFO+∠OBF=∠CFG+∠CGF=∠OBF+∠PBH=90°,
    ∴∠PBH=∠OFB=∠CGF,
    ∵∠PHB=∠FCG=90°,
    ∴△PHB≌△FCG(AAS),
    ∴PH=CF,
    ∴CF=PH=t,OF=3﹣t,
    ∵∠PBH=∠OFB,
    ∴=,即=,
    解得:t1=0(舍),t2=1,
    ∴F(2,0);
    ②如图2,过点G作GN⊥y轴于N,过点P作PM⊥x轴于M,

    同①可得:NG=FM=3,OF=t﹣3,
    ∵∠OFB=∠FPM,
    ∴tan∠OFB=tan∠FPM,
    ∴=,即=,
    解得:t1=,t2=(舍),
    ∴F(,0);
    综上,点F的坐标为(2,0)或(,0).
    六.平行四边形的性质(共1小题)
    9.(2022•泸州)如图,E,F分别是▱ABCD的边AB,CD上的点,已知AE=CF.求证:DE=BF.

    【答案】证明过程见解答.
    【解答】证明:∵四边形ABCD是平行四边形,
    ∴∠A=∠C,AD=CB,
    在△ADE和△CBF中,

    ∴△ADE≌△CBF(SAS),
    ∴DE=BF.
    七.切线的性质(共2小题)
    10.(2021•泸州)如图,△ABC是⊙O的内接三角形,过点C作⊙O的切线交BA的延长线于点F,AE是⊙O的直径,连接EC.
    (1)求证:∠ACF=∠B;
    (2)若AB=BC,AD⊥BC于点D,FC=4,FA=2,求AD•AE的值.

    【答案】(1)证明见解答;
    (2)18.
    【解答】(1)证明:如图1,连接OC,

    ∵CF是⊙O的切线,
    ∴∠OCF=90°,
    ∴∠OCA+∠ACF=90°,
    ∵OE=OC,
    ∴∠E=∠OCE,
    ∵AE是⊙O的直径,
    ∴∠ACE=90°,
    ∴∠OCA+∠OCE=90°,
    ∴∠ACF=∠OCE=∠E,
    ∵∠B=∠E,
    ∴∠ACF=∠B;
    (2)解:∵∠ACF=∠B,∠F=∠F,
    ∴△ACF∽△CBF,
    ∴=,
    ∵AF=2,CF=4,
    ∴,
    ∴BF=8,
    ∴AB=BC=8﹣2=6,AC=3,
    ∵AD⊥BC,
    ∴∠ADB=∠ACE=90°,
    ∵∠B=∠E,
    ∴△ABD∽△AEC,
    ∴=,即AE•AD=AB×AC=6×3=18.
    11.(2023•泸州)如图,AB是⊙O的直径,AB=2,⊙O的弦CD⊥AB于点E,CD=6.过点C作⊙O的切线交AB的延长线于点F,连接BC.
    (1)求证:BC平分∠DCF;
    (2)G为上一点,连接CG交AB于点H,若CH=3GH,求BH的长.

    【答案】(1)见解析;
    (2)2.
    【解答】(1)证明:如图,连接OC,
    ∵CF是⊙O的切线,点C是切点,
    ∴OC⊥CF,
    即∠OCF=90°,
    ∴∠OCB+∠BCF=90°,
    ∵CD⊥AB,AB是直径,
    ∴CE=DE=CD=3,∠BEC=90°,
    ∴∠BCE+∠OBC=90°,
    ∵OB=OC,
    ∴∠OCB=∠OBC,
    ∴∠BCE=∠BCF,
    即BC平分∠DCF;
    (2)解:连接OC,OG,过G作GM⊥AB于M,
    ∵AB是⊙O的直径,CD⊥AB,
    ∴CE=CD=3,OC=OG=AB=,
    ∴OE==1,
    ∵GM⊥AB,CD⊥AB,
    ∴CE∥GM,
    ∴△GMH∽△CEH,
    ∴,
    ∵CH=3GH,
    ∴,
    ∴GM=1,
    设MH=x,则HE=3x,
    ∴HO=3x﹣1.OM=4x﹣1,
    在Rt△OGM中,OM2+GM2=OG2,
    ∴(4x﹣1)2+12=()2,
    解得x=1(负值舍去),
    ∴BH=OH+OB=3×1﹣1+=2.

    八.圆的综合题(共1小题)
    12.(2022•泸州)如图,点C在以AB为直径的⊙O上,CD平分∠ACB交⊙O于点D,交AB于点E,过点D作⊙O的切线交CO的延长线于点F.
    (1)求证:FD∥AB;
    (2)若AC=2,BC=,求FD的长.

    【答案】(1)证明见解析部分;
    (2).
    【解答】(1)证明:连接OD.
    ∵DF是⊙O的切线,
    ∴OD⊥DF,
    ∵CD平分∠ACB,
    ∴=,
    ∴OD⊥AB,
    ∴AB∥DF;

    (2)解:过点C作CH⊥AB于点H.
    ∵AB是直径,
    ∴∠ACB=90°,
    ∵BC=,AC=2,
    ∴AB===5,
    ∵S△ABC=•AC•BC=•AB•CH,
    ∴CH==2,
    ∴BH==1,
    ∴OH=OB﹣BH=﹣1=,
    ∵DF∥AB,
    ∴∠COH=∠F,
    ∵∠CHO=∠ODF=90°,
    ∴△CHO∽△ODF,
    ∴=,
    ∴=,
    ∴DF=.

    九.解直角三角形的应用-仰角俯角问题(共1小题)
    13.(2023•泸州)如图,某数学兴趣小组为了测量古树DE的高度,采用了如下的方法:先从与古树底端D在同一水平线上的点A出发,沿斜面坡度为i=2:的斜坡AB前进20m到达点B,再沿水平方向继续前进一段距离后到达点C.在点C处测得古树DE的顶端E的俯角为37°,底部D的俯角为60°,求古树DE的高度(参考数据:sin37°≈,cos37°≈,tan37°≈,计算结果用根号表示,不取近似值).

    【答案】(40﹣)m.
    【解答】解:过点B作BF⊥AD于点F,过点C作CG⊥AD于点G,

    在Rt△ABF中,
    ∵i=2:,
    ∴可设BF=2k,AF=k,
    ∵AB=m,
    ∵BF2+AF2=AB2,
    ∴(2k)2+(k)2=()2,
    解得k=20(负的已舍),
    ∴BF=2k=40m,
    延长BC,DE交于点H,
    ∵BC是水平线,DE是铅直线,
    ∴DH⊥CH,△CDH和△CEH都是△Rt,
    ∵AD,BC都是水平线,BF⊥AD,DH⊥BC,
    ∴四边形BFDH是矩形,
    ∴DH=BF=40m,
    在Rt△CDH中,
    ∵tan∠DCH=,
    ∴CH==(m),
    在Rt△CEH中,
    ∵tan∠CEH=,
    ∴EH=CH•tan∠CEH=•tan37°≈×=(m),
    ∴DE=DH﹣EH=(40﹣)
    答:古树DE的高度为(40﹣)m.
    一十.解直角三角形的应用-方向角问题(共2小题)
    14.(2022•泸州)如图,海中有两小岛C,D,某渔船在海中的A处测得小岛C位于东北方向,小岛D位于南偏东30°方向,且A,D相距10nmile.该渔船自西向东航行一段时间后到达点B,此时测得小岛C位于西北方向且与点B相距8nmile.求B,D间的距离(计算过程中的数据不取近似值).

    【答案】14nmile.
    【解答】解:由题意得,∠CAB=∠ABC=45°,BC=8nmile.
    ∴∠C=90°,
    ∴AB==BC=8=16(nmile),
    过D作DH⊥AB于H,
    则∠AHD=∠BHD=90°,
    在Rt△ADH中,∠ADH=30°,AD=10nmile,cos∠ADH=,
    ∴AH=AD=5nmile,DH=10•cos30°=10×=5mile,
    ∴BH=AB﹣AH=11nmile,
    在Rt△BDH中,
    BD===14(nmile),
    答:B,D间的距离是14nmile.

    15.(2021•泸州)如图,A,B是海面上位于东西方向的两个观测点,有一艘海轮在C点处遇险发出求救信号,此时测得C点位于观测点A的北偏东45°方向上,同时位于观测点B的北偏西60°方向上,且测得C点与观测点A的距离为25海里.
    (1)求观测点B与C点之间的距离;
    (2)有一艘救援船位于观测点B的正南方向且与观测点B相距30海里的D点处,在接到海轮的求救信号后立即前往营救,其航行速度为42海里/小时,求救援船到达C点需要的最少时间.

    【答案】见试题解答内容
    【解答】解:(1)如图,过点C作CE⊥AB于点E,

    根据题意可知:∠ACE=∠CAE=45°,AC=25海里,
    ∴AE=CE=25(海里),
    ∵∠CBE=30°,
    ∴BE=25(海里),
    ∴BC=2CE=50(海里).
    答:观测点B与C点之间的距离为50海里;
    (2)如图,作CF⊥DB于点F,
    ∵CF⊥DB,FB⊥EB,CE⊥AB,
    ∴四边形CEBF是矩形,
    ∴FB=CE=25(海里),CF=BE=25(海里),
    ∴DF=BD+BF=30+25=55(海里),
    在Rt△DCF中,根据勾股定理,得
    CD===70(海里),
    ∴70÷42=(小时).
    答:救援船到达C点需要的最少时间是小时.

    相关试卷

    陕西省2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类: 这是一份陕西省2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类,共25页。试卷主要包含了之间的关系如图所示,问题提出等内容,欢迎下载使用。

    青海省2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类: 这是一份青海省2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类,共28页。试卷主要包含了两点,与y轴交于点C,综合与实践等内容,欢迎下载使用。

    河北省2021-2023三年中考数学真题分类汇编-02解答题(提升题)知识点分类: 这是一份河北省2021-2023三年中考数学真题分类汇编-02解答题(提升题)知识点分类,共33页。试卷主要包含了称为一次乙方式,2上,且在C的对称轴右侧,求点P′移动的最短路程,,连接A′P等内容,欢迎下载使用。

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        四川省泸州市2021-2023三年中考数学真题分类汇编-02解答题(提升题)知识点分类
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map