四川省自贡市2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类
展开四川省自贡市2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类
一.实数的运算(共2小题)
1.(2023•自贡)计算:|﹣3|﹣(+1)0﹣22.
2.(2021•自贡)计算:﹣|﹣7|+(2﹣)0.
二.一元一次方程的应用(共1小题)
3.(2023•自贡)某校组织七年级学生到江姐故里研学旅行,租用同型号客车4辆,还剩30人没有座位;租用5辆,还空10个座位.求该客车的载客量.
三.解一元一次不等式组(共1小题)
4.(2022•自贡)解不等式组:,并在数轴上表示其解集.
四.一次函数与一元一次不等式(共1小题)
5.(2021•自贡)函数图象是研究函数的重要工具.探究函数性质时,我们经历了列表、描点、连线画出函数图象,然后观察分析图象特征,概括函数性质的过程.请结合已有的学习经验,画出函数y=﹣的图象,并探究其性质.
列表如下:
x | … | ﹣4 | ﹣3 | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | 4 | … |
y | … | a | 0 | b | ﹣2 | ﹣ | ﹣ | … |
(1)直接写出表中a、b的值,并在平面直角坐标系中画出该函数的图象;
(2)观察函数y=﹣的图象,判断下列关于该函数性质的命题:
①当﹣2≤x≤2时,函数图象关于直线y=x对称;
②x=2时,函数有最小值,最小值为﹣2;
③﹣1<x<1时,函数y的值随x的增大而减小.
其中正确的是 .(请写出所有正确命题的序号)
(3)结合图象,请直接写出不等式>x的解集 .
五.平行四边形的判定与性质(共1小题)
6.(2023•自贡)如图,在平行四边形ABCD中,点M,N分别在边AB,CD上,且AM=CN.求证:DM=BN.
六.矩形的性质(共1小题)
7.(2022•自贡)如图,用四根木条钉成矩形框ABCD,把边BC固定在地面上,向右边推动矩形框,矩形的形状会发生改变(四边形具有不稳定性).
(1)通过观察分析,我们发现图中线段存在等量关系,如线段EB由AB旋转得到,所以EB=AB.我们还可以得到FC= ,EF= ;
(2)进一步观察,我们还会发现EF∥AD,请证明这一结论;
(3)已知BC=30cm,DC=80cm,若BE恰好经过原矩形DC边的中点H,求EF与BC之间的距离.
七.解直角三角形的应用-仰角俯角问题(共2小题)
8.(2023•自贡)为测量学校后山高度,数学兴趣小组活动过程如下:
(1)测量坡角
如图1,后山一侧有三段相对平直的山坡AB,BC,CD,山的高度即为三段坡面的铅直高度BH,CQ,DR之和,坡面的长度可以直接测量得到,要求山坡高度还需要知道坡角大小.
如图2,同学们将两根直杆MN,MP的一端放在坡面起始端A处,直杆MP沿坡面AB方向放置,在直杆MN另一端N用细线系小重物G,当直杆MN与铅垂线NG重合时,测得两杆夹角α的度数,由此可得山坡AB坡角β的度数.请直接写出α,β之间的数量关系.
(2)测量山高
同学们测得山坡AB,BC,CD的坡长依次为40米,50米,40米,坡角依次为24°,30°,45°;为求BH,小熠同学在作业本上画了一个含24°角的Rt△TKS(如图3),量得KT≈5cm,TS≈2cm.求山高DF.(≈1.41,结果精确到1米)
(3)测量改进
由于测量工作量较大,同学们围绕如何优化测量进行了深入探究,有了以下新的测量方法.
如图4,5,在学校操场上,将直杆NP置于MN的顶端,当MN与铅垂线NG重合时,转动直杆NP,使点N,P,D共线,测得∠MNP的度数,从而得到山顶仰角β1,向后山方向前进40米,采用相同方式,测得山顶仰角β2;画一个含β1的直角三角形,量得该角对边和另一直角边分别为a1厘米,b1厘米,再画一个含β2的直角三角形,量得该角对边和另一直角边分别为a2厘米,b2厘米.已知杆高MN为1.6米,求山高DF.(结果用不含β1,β2的字母表示)
9.(2021•自贡)在一次数学课外实践活动中,小明所在的学习小组从综合楼顶部B处测得办公楼底部D处的俯角是53°,从综合楼底部A处测得办公楼顶部C处的仰角恰好是30°,综合楼高24米.请你帮小明求出办公楼的高度.(结果精确到0.1,参考数据tan37°≈0.75,tan53°≈1.33,≈1.73)
八.条形统计图(共1小题)
10.(2023•自贡)某校为了解“世界读书日”主题活动开展情况,对本学期开学以来学生课外读书情况进行了随机抽样调查,所抽取的12名学生课外读书数量(单位:本)数据如下:2,4,5,4,3,5,3,4,1,3,2,4.
(1)补全学生课外读书数量条形统计图;
(2)请直接写出本次所抽取学生课外读书数量的众数、中位数和平均数;
(3)该校有600名学生,请根据抽样调查的结果,估计本学期开学以来课外读书数量不少于3本的学生人数.
九.列表法与树状图法(共1小题)
11.(2022•自贡)为了解学生每周参加课外兴趣小组活动的累计时间t(单位:小时),学校采用随机抽样的方法,对部分学生进行了问卷调查,调查结果按0≤t<3,3≤t<4,4≤t<5,t≥5分为四个等级,分别用A、B、C、D表示.如图是受损的调查统计图,请根据图上残存信息解决以下问题:
(1)求参与问卷调查的学生人数n,并将条形统计图补充完整;
(2)全校共有学生2000人,试估计学校每周参加课外兴趣小组活动累计时间不少于4小时的学生人数;
(3)某小组有4名同学,A、D等级各2人,从中任选2人向老师汇报兴趣活动情况.请用画树状图法或列表法求这2人均属D等级的概率.
四川省自贡市2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类
参考答案与试题解析
一.实数的运算(共2小题)
1.(2023•自贡)计算:|﹣3|﹣(+1)0﹣22.
【答案】﹣2.
【解答】解:原式=3﹣1﹣4
=﹣2.
2.(2021•自贡)计算:﹣|﹣7|+(2﹣)0.
【答案】﹣1.
【解答】解:原式=5﹣7+1=﹣1.
二.一元一次方程的应用(共1小题)
3.(2023•自贡)某校组织七年级学生到江姐故里研学旅行,租用同型号客车4辆,还剩30人没有座位;租用5辆,还空10个座位.求该客车的载客量.
【答案】该客车的载客量为40人.
【解答】解:设该客车的载客量为x人,
根据题意得:4x+30=5x﹣10,
解得:x=40.
答:该客车的载客量为40人.
三.解一元一次不等式组(共1小题)
4.(2022•自贡)解不等式组:,并在数轴上表示其解集.
【答案】﹣1<x<2.
【解答】解:由不等式3x<6,解得:x<2,
由不等式5x+4>3x+2,解得:x>﹣1,
∴不等式组的解集为:﹣1<x<2,
∴在数轴上表示不等式组的解集为:
四.一次函数与一元一次不等式(共1小题)
5.(2021•自贡)函数图象是研究函数的重要工具.探究函数性质时,我们经历了列表、描点、连线画出函数图象,然后观察分析图象特征,概括函数性质的过程.请结合已有的学习经验,画出函数y=﹣的图象,并探究其性质.
列表如下:
x | … | ﹣4 | ﹣3 | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | 4 | … |
y | … | a | 0 | b | ﹣2 | ﹣ | ﹣ | … |
(1)直接写出表中a、b的值,并在平面直角坐标系中画出该函数的图象;
(2)观察函数y=﹣的图象,判断下列关于该函数性质的命题:
①当﹣2≤x≤2时,函数图象关于直线y=x对称;
②x=2时,函数有最小值,最小值为﹣2;
③﹣1<x<1时,函数y的值随x的增大而减小.
其中正确的是 ②③ .(请写出所有正确命题的序号)
(3)结合图象,请直接写出不等式>x的解集 x<﹣2或0<x<2 .
【答案】(1)2,﹣;
(2)②③;
(3)x<﹣2或0<x<2.
【解答】解:(1)把x=﹣2代入y=﹣得,y=﹣=2,
把x=1代入y=﹣得,y=﹣=﹣,
∴a=2,b=﹣,
函数y=﹣的图象如图所示:
(2)观察函数y=﹣的图象,
①当﹣2≤x≤2时,函数图象关于原点对称;错误;
②x=2时,函数有最小值,最小值为﹣2;正确;
③﹣1<x<1时,函数y的值随x的增大而减小,正确.
故答案为②③;
(3)由图象可知,函数y=﹣与直线y=﹣x的交点为(﹣2,2)、(0,0)、(2,﹣2)
∴不等式>x的解集为x<﹣2或0<x<2.
五.平行四边形的判定与性质(共1小题)
6.(2023•自贡)如图,在平行四边形ABCD中,点M,N分别在边AB,CD上,且AM=CN.求证:DM=BN.
【答案】见解析.
【解答】证明:∵四边形ABCD是平行四边形,
∴AB∥CD,AB=CD,
∵AM=CN,
∴AB﹣AM=CD﹣CN,
即BM=DN,
又∵BM∥DN,
∴四边形MBND是平行四边形,
∴DM=BN.
六.矩形的性质(共1小题)
7.(2022•自贡)如图,用四根木条钉成矩形框ABCD,把边BC固定在地面上,向右边推动矩形框,矩形的形状会发生改变(四边形具有不稳定性).
(1)通过观察分析,我们发现图中线段存在等量关系,如线段EB由AB旋转得到,所以EB=AB.我们还可以得到FC= CD ,EF= AD ;
(2)进一步观察,我们还会发现EF∥AD,请证明这一结论;
(3)已知BC=30cm,DC=80cm,若BE恰好经过原矩形DC边的中点H,求EF与BC之间的距离.
【答案】(1)CD,AD;
(2)见解析过程;
(3)EF与BC之间的距离为64cm.
【解答】(1)解:∵把边BC固定在地面上,向右边推动矩形框,矩形的形状会发生改变,
∴矩形ABCD的各边的长度没有改变,
∴AB=BE,EF=AD,CF=CD,
故答案为:CD,AD;
(2)证明:∵四边形ABCD是矩形,
∴AD∥BC,AB=CD,AD=BC,
∵AB=BE,EF=AD,CF=CD,
∴BE=CF,EF=BC,
∴四边形BEFC是平行四边形,
∴EF∥BC,
∴EF∥AD;
(3)如图,过点E作EG⊥BC于G,
∵DC=AB=BE=80cm,点H是CD的中点,
∴CH=DH=40cm,
在Rt△BHC中,BH===50(cm),
∵EG⊥BC,
∴CH∥EG,
∴△BCH∽△BGE,
∴,
∴=,
∴EG=64,
∴EF与BC之间的距离为64cm.
七.解直角三角形的应用-仰角俯角问题(共2小题)
8.(2023•自贡)为测量学校后山高度,数学兴趣小组活动过程如下:
(1)测量坡角
如图1,后山一侧有三段相对平直的山坡AB,BC,CD,山的高度即为三段坡面的铅直高度BH,CQ,DR之和,坡面的长度可以直接测量得到,要求山坡高度还需要知道坡角大小.
如图2,同学们将两根直杆MN,MP的一端放在坡面起始端A处,直杆MP沿坡面AB方向放置,在直杆MN另一端N用细线系小重物G,当直杆MN与铅垂线NG重合时,测得两杆夹角α的度数,由此可得山坡AB坡角β的度数.请直接写出α,β之间的数量关系.
(2)测量山高
同学们测得山坡AB,BC,CD的坡长依次为40米,50米,40米,坡角依次为24°,30°,45°;为求BH,小熠同学在作业本上画了一个含24°角的Rt△TKS(如图3),量得KT≈5cm,TS≈2cm.求山高DF.(≈1.41,结果精确到1米)
(3)测量改进
由于测量工作量较大,同学们围绕如何优化测量进行了深入探究,有了以下新的测量方法.
如图4,5,在学校操场上,将直杆NP置于MN的顶端,当MN与铅垂线NG重合时,转动直杆NP,使点N,P,D共线,测得∠MNP的度数,从而得到山顶仰角β1,向后山方向前进40米,采用相同方式,测得山顶仰角β2;画一个含β1的直角三角形,量得该角对边和另一直角边分别为a1厘米,b1厘米,再画一个含β2的直角三角形,量得该角对边和另一直角边分别为a2厘米,b2厘米.已知杆高MN为1.6米,求山高DF.(结果用不含β1,β2的字母表示)
【答案】(1)α+β=90°;
(2)约为69米;
(3)(+1.6)米.
【解答】解:(1)∵铅直线与水平线垂直,
∴α+β=90°,
故α,β之间的数量关系为:α+β=90°;
(2)在Rt△ABH中,
∵AB=40米,∠BAH=24°,
sin∠BAH=,
∴sin24°=,
在Rt△TKS中,
∵KT≈5cm,TS≈2cm,∠TKS=24°,
sin∠TKS=,
∴sin24°=,
∴=,
解得BH=16米,
在Rt△CBQ中,
∵BC=50米,∠CBQ=30°,
∴CQ=CB=25米,
在Rt△DCR中,
∵CD=40米,∠DCR=45°,
sin∠DCR=,
∴DR=CD•sin∠DCR=40•sin45°=(米),
∴DF=BH+CQ+DR=16+25+≈69(米),
答:山高DF约为69米;
(3)由题意,得tanβ1=,tanβ2=,
在Rt△DNL中,
∵tanβ1=,
∴,
∴NL=,
在Rt△DCR中,
∵tanβ2=,
∴,
∴N'L=,
∵NL﹣N'L=NN'=40(米),
∴﹣=40,
解得DL=,
∴山高DF=DL+LF=+1.6(米),
答:山高DF为(+1.6)米.
9.(2021•自贡)在一次数学课外实践活动中,小明所在的学习小组从综合楼顶部B处测得办公楼底部D处的俯角是53°,从综合楼底部A处测得办公楼顶部C处的仰角恰好是30°,综合楼高24米.请你帮小明求出办公楼的高度.(结果精确到0.1,参考数据tan37°≈0.75,tan53°≈1.33,≈1.73)
【答案】见试题解答内容
【解答】解:由题意可知AB=24米,∠BDA=53°,
∴tan∠BDA==≈1.33,
∴AD=≈18.05(米).
∵tan∠CAD=tan30°===,
∴CD=18.05×≈10.4(米).
故办公楼的高度约为10.4米.
八.条形统计图(共1小题)
10.(2023•自贡)某校为了解“世界读书日”主题活动开展情况,对本学期开学以来学生课外读书情况进行了随机抽样调查,所抽取的12名学生课外读书数量(单位:本)数据如下:2,4,5,4,3,5,3,4,1,3,2,4.
(1)补全学生课外读书数量条形统计图;
(2)请直接写出本次所抽取学生课外读书数量的众数、中位数和平均数;
(3)该校有600名学生,请根据抽样调查的结果,估计本学期开学以来课外读书数量不少于3本的学生人数.
【答案】(1)图形见解析过程;
(2)众数为4本,中位数为3.5本,平均数为本;
(3)本学期开学以来课外读书数量不少于3本的学生人数为450名.
【解答】解:(1)
,
(2)本次所抽取学生课外读书数量的众数为4本,
中位数为(本),
平均数为=(本),
(3)(名),
答:本学期开学以来课外读书数量不少于3本的学生人数为450名.
九.列表法与树状图法(共1小题)
11.(2022•自贡)为了解学生每周参加课外兴趣小组活动的累计时间t(单位:小时),学校采用随机抽样的方法,对部分学生进行了问卷调查,调查结果按0≤t<3,3≤t<4,4≤t<5,t≥5分为四个等级,分别用A、B、C、D表示.如图是受损的调查统计图,请根据图上残存信息解决以下问题:
(1)求参与问卷调查的学生人数n,并将条形统计图补充完整;
(2)全校共有学生2000人,试估计学校每周参加课外兴趣小组活动累计时间不少于4小时的学生人数;
(3)某小组有4名同学,A、D等级各2人,从中任选2人向老师汇报兴趣活动情况.请用画树状图法或列表法求这2人均属D等级的概率.
【答案】(1)100;
(2)900;
(3).
【解答】解:(1)n==100,
∴D等级的人数=100﹣40﹣15﹣10=35(人),
条形统计图补充如下:
(2)学校每周参加课外兴趣小组活动累计时间不少于4小时的学生人数=2000×=900(人),
∴估计每周参加课外兴趣小组活动累计时间不少于4小时的学生为900人;
(3)设A等级2人分别用A1,A2表示,D等级2人分别用D1,D2表示,随机选出2人向老师汇报兴趣活动情况的树状图如下:
∴共有12种等可能结果,而选出2人中2人均属D等级有2种,
∴所求概率==.
河南省2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类: 这是一份河南省2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类,共22页。试卷主要包含了计算,0;,0+2﹣1;,,且经过小正方形的顶点B,是水柱距地面的高度等内容,欢迎下载使用。
陕西省2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类: 这是一份陕西省2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类,共30页。试卷主要包含了0+|1﹣|﹣,解方程,解不等式,解不等式组,之间的关系如图所示等内容,欢迎下载使用。
青海省2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类: 这是一份青海省2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类,共13页。试卷主要包含了计算,,其中x=+1,÷,其中a=,解方程,如图,DB是▱ABCD的对角线等内容,欢迎下载使用。