专题13 动点最值之隐圆模型(讲+练)(原卷版)-2022年中考数学几何模型专项复习与训练
展开专题13 动点最值之隐圆模型
模型一、动点定长模型
若P为动点,但AB=AC=AP,则B、C、P三点共圆,A圆心,AB半径
例. 如图,在边长为2的菱形ABCD中,∠A=60°,M是AD边的中点,N是AB边上的一动点,将△AMN沿MN所在直线翻折得到△A`MN,连接A`C,则A`C长度的最小值是__________.
【变式训练1】如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,点F在边AC上,并且CF=2,点E为边BC上的动点,将△CEF沿直线EF翻折,点C落在点P处,则点P到边AB距离的最小值是__________.
【变式训练2】如图,矩形ABCD中,AB=4,BC=8,P、Q分别是直线BC、AB上的两个动点,AE=2,△AEQ沿EQ翻折形成△FEQ,连接PF、PD,则PF+PD的最小值是_________.
模型二、直角圆周角模型
固定线段AB所对动角∠C恒为90°,则A、B、C三点共圆,AB为直径
例.如图,Rt△ABC中,AB⊥BC,AB=8,BC=4,P是△ABC内部的一个动点,且满足∠PAB=∠PBC,则线段CP长的最小值是_________.
【变式训练1】如图,已知正方形ABCD的边长为4,点M和N分别从B、C同时出发,以相同的速度沿BC、CD向终点C、D运动,连接AM、BN,交于点P,连接PC,则PC长的最小值为( )
A.2-2 B.2 C.3-1 D.2
【变式训练2】如图,E、F是正方形ABCD的边AD上的两个动点,满足AE=DF,连接CF交BD于点G,连接BE交AG于点H,若正方形边长为2,则线段DH长度的最小值是________.
【变式训练3】如图,点M是矩形ABCD的边BC、CD上的点,过点B作BN⊥AM于点P,交矩形ABCD的边于点N,连接DP,若AB=6,AD=4,则DP的长的最小值为( )
A.2 B. C.4 D.5
模型三、四点共圆模型
固定线段AB所对同侧动角∠P=∠C,则A、B、C、P四点共圆
例.如图,∽,,,,是的中点,若点是直线上的动点,连接,则的最小值是( )
A. B. C. D.
【变式训练1】如图,在四边形ABCD中,∠BCD=90°,AC为对角线,过点D作DF⊥AB,垂足为E,交CB延长线于点F,若AC=CF,∠CAD=∠CFD,DF﹣AD=2,AB=6,则ED的长为 .
【变式训练2】如图,为菱形内一动点,连接,,,,,则的最大值为( )
A. B. C. D.
【变式训练3】如图,在△ABC中,BC=9,AC=12,AB=15,D为直线AB上方一点,连接AD,BD,且∠ADB=90°,过D作直线BC的垂线,垂足为E,则线段BE的长度的最大值为_____.
课后训练
1.如图,在Rt△ABC中,∠ACB=90°,BC=4,AC=10,点D是AC上的一个动点,以CD为直径作圆O,连接BD交圆O于点E,则AE的最小值为_________.
2.如图,AB是半⊙O的直径,点C在半⊙O上,AB=5cm,AC=4cm.D是上的一个动点,连接AD,过点C作CE⊥AD于E,连接BE.在点D移动的过程中,BE的最小值为( )
A.1 B.﹣2 C.2﹣1 D.3
3.如图,在平行四边形ABCD中,AB=8,AD=6,以AB为边向右作等边ABE,F为边CD上一点,DF=2,连接EF,则EF的最小值为___.
4.如图,正方形的边长为5,点O是中心,点M在边上,连接,,过O作,交边于点N.若,则的长是__________.
5.在Rt△ABC中,∠C=90°,AC=10,BC=12,点D为线段BC上一动点.以CD为⊙O直径,作AD交⊙O于点E,连BE,则BE的最小值为 8 .
6.如图,在中,,点是边上一动点,过点作交的延长线于.若,,则的最小值为( )
A. B.1 C. D.
7.如图,正方形ABCD的边长为4,动点E、F分别从点A、C同时出发,以相同的速度分别沿AB、CD向终点B、D移动,当点E到达点B时,运动停止,过点B作直线EF的垂线BG,垂足为点G,连接AG,则AG长的最小值为 .
8.如图,矩形ABCD中,AB=3,BC=4,点E是AB边上一点,且AE=2,点F是边BC上的任意一点,把△BEF沿EF翻折,点B的对应点为G,连接AG,CG,则四边形AGCD的面积的最小值为 .
中考数学专项训练(27)专题 模型 隐圆模型----点圆、线圆最值含解析答案: 这是一份中考数学专项训练(27)专题 模型 隐圆模型----点圆、线圆最值含解析答案,共10页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
模型23 隐圆系列之点圆最值模型(讲+练)-备战2023年中考数学解题大招复习讲义(全国通用): 这是一份模型23 隐圆系列之点圆最值模型(讲+练)-备战2023年中考数学解题大招复习讲义(全国通用),文件包含模型23隐圆系列之点圆最值模型原卷版docx、模型23隐圆系列之点圆最值模型解析版docx等2份试卷配套教学资源,其中试卷共38页, 欢迎下载使用。
专题11 动点最值(原卷版)-2022年中考数学几何模型专项复习与训练: 这是一份专题11 动点最值(原卷版)-2022年中考数学几何模型专项复习与训练,文件包含专题11动点最值之将军饮马模型讲+练解析版-2022年中考数学几何模型专项复习与训练docx、专题11动点最值之将军饮马模型讲+练原卷版-2022年中考数学几何模型专项复习与训练docx等2份试卷配套教学资源,其中试卷共24页, 欢迎下载使用。