高考化学二轮复习(新高考版) 第1部分 专题7 大题题空 逐空突破(七) 化学反应速率、平衡的综合计算(含解析)
展开
1.化学平衡常数
(1)意义:化学平衡常数K表示反应进行的程度,K越大,反应进行的程度越大。K>105时,可以认为该反应已经进行完全。K的大小只与温度有关。
(2)化学平衡常数表达式:对于可逆化学反应mA(g)+nB(g)pC(g)+qD(g)在一定温度下达到化学平衡时,K=。另可用压强平衡常数表示:
Kp=[p(C)为平衡时气体C的分压]。
(3)依据化学方程式计算平衡常数
①同一可逆反应中,K正·K逆=1。
②同一方程式中的化学计量数等倍扩大或缩小n倍,则新平衡常数K′与原平衡常数K间的关系是K′=Kn或K′=。
③几个可逆反应方程式相加,得总方程式,则总反应的平衡常数等于各分步反应平衡常数之积。
2.转化率、产率及分压的计算
反应物转化率=×100%
产物的产率=×100%
分压=总压×物质的量分数
3.常用的气体定律
同温同体积:p(前)∶p(后)=n(前)∶n(后)
同温同压强:===
4.速率常数与化学平衡常数关系的应用
温度为T1,在三个容积均为1 L的恒容密闭容器中仅发生反应CH4(g)+H2O(g)CO(g)+3H2(g) ΔH=+206.3 kJ·mol-1,该反应中,正反应速率为v正=k正c(CH4)·c(H2O),逆反应速率为v逆=k逆c(CO)·c3(H2),k正、k逆为速率常数,受温度影响。
已知T1时,k正=k逆,则该温度下,平衡常数K1=____;当温度改变为T2时,若k正=1.5k逆,则T2________T1(填“>”“=”或“<”)。
答案 1 >
解析 解题步骤及过程:
步骤1 代入特殊值:
平衡时v正=v逆,即
k正c(CH4)·c(H2O)=k逆c(CO)·c3(H2);
步骤2,适当变式求平衡常数,
K1==;k正=k逆,K1=1
步骤3 求其他
K2==;k正=1.5k逆,K2=1.5;
1.5>1,平衡正向移动,升高温度平衡向吸热方向移动;则T2>T1。
1.[2020·全国卷Ⅰ,28(2)(3)(4)]硫酸是一种重要的基本化工产品,接触法制硫酸生产中的关键工序是SO2的催化氧化:SO2(g)+O2(g)SO3(g) ΔH=-98 kJ·mol-1。回答下列问题:
(2)当SO2(g)、O2(g)和N2(g)起始的物质的量分数分别为7.5%、10.5%和82%时,在0.5 MPa、2.5 MPa和5.0 MPa压强下,SO2平衡转化率α随温度的变化如图(b)所示。反应在5.0 MPa、550 ℃时的α=________,判断的依据是_________________________________________。
影响α的因素有__________________________。
(3)将组成(物质的量分数)为2m% SO2(g)、m% O2(g)和q% N2(g)的气体通入反应器,在温度t、压强p条件下进行反应。平衡时,若SO2转化率为α,则SO3压强为__________________,平衡常数Kp=________________(以分压表示,分压=总压×物质的量分数)。
(4)研究表明,SO2催化氧化的反应速率方程为:v=k(-1)0.8(1-nα′)。式中:k为反应速率常数,随温度t升高而增大;α为SO2平衡转化率,α′为某时刻SO2转化率,n为常数。在α′=0.90时,将一系列温度下的k、α值代入上述速率方程,得到v~t曲线,如图(c)所示。
曲线上v最大值所对应温度称为该α′下反应的最适宜温度tm。t
答案 (2)0.975 该反应气体分子数减少,增大压强,α提高。5.0 MPa>2.5 MPa=p2,所以p1=5.0 MPa 反应物(N2和O2)的起始浓度(组成)、温度、压强
(3) (4)升高温度,k增大使v逐渐提高,但α降低使v逐渐下降。当t<tm,k增大对v的提高大于α引起的降低;当t>tm,k增大对v的提高小于α引起的降低
解析 (2)反应2SO2(g)+O2(g)2SO3(g)的正反应是气体总分子数减少的放热反应,其他条件相同时,增大压强,平衡正向移动,SO2平衡转化率增大,则图中p1=5.0 MPa,p3=0.5 MPa。由图可知,反应在5.0 MPa、550 ℃时SO2的平衡转化率α=0.975。温度、压强和反应物的起始浓度(组成)都会影响SO2的平衡转化率α,温度一定时,压强越大,α越大;压强一定时,温度越高,α越小。
(3)假设原气体的物质的量为100 mol,则SO2、O2和N2的物质的量分别为2m mol,m mol和q mol,2m+m+q=100,利用“三段式法”计算:
SO2(g) + O2(g) SO3(g)
起始量/mol 2m m 0
转化量/mol 2mα mα 2mα
平衡量/mol 2m×(1-α) m×(1-α) 2mα
平衡时混合气体的总物质的量为2m×(1-α)mol+m×(1-α)mol+2mα mol+q mol=(3m-mα+q ) mol,SO3的物质的量分数为×100%=×100%,则平衡时SO3的压强为p。平衡时,SO2、O2的压强分别为p、p,则平衡常数Kp==。
(4)在α′=0.90时,SO2催化氧化的反应速率为v=k(-1)0.8·(1-0.90n)。升高温度,k增大使v逐渐提高,但α降低使v逐渐下降。t<tm时,k增大对v的提高大于α引起的降低;t>tm后,k增大对v的提高小于α引起的降低。
2.[2020·全国卷Ⅱ,28(1)]乙烷在一定条件可发生如下反应:C2H6(g)===C2H4(g)+H2(g) ΔH1,相关物质的燃烧热数据如下表所示:
物质
C2H6(g)
C2H4(g)
H2(g)
燃烧热ΔH/( kJ·mol-1)
-1 560
-1 411
-286
①ΔH1=________ kJ·mol-1。
②提高该反应平衡转化率的方法有________________、________________。
③容器中通入等物质的量的乙烷和氢气,在等压下(p)发生上述反应,乙烷的平衡转化率为α。反应的平衡常数Kp=________(用平衡分压代替平衡浓度计算,分压=总压×物质的量分数)。
答案 ①+137 ②升高温度 减小压强(或增大体积) ③×p
解析 ①先写出三种气体的燃烧热的热化学方程式,然后根据盖斯定律,ΔH1=
-1 560 kJ·mol-1-(-1 411 kJ·mol-1)-(-286 kJ·mol-1)=+137 kJ·mol-1。
②C2H6(g)===C2H4(g)+H2(g) ΔH1=+137 kJ·mol-1是一个气体分子数增大的吸热反应,要提高反应物的转化率,可以采取升高温度、减小压强(增大体积)等措施。
③设容器中通入的乙烷和氢气均为1 mol,则:
C2H6(g)===C2H4(g)+H2(g) n(总)
初始量/mol 1 0 1
转化量/mol α α α
平衡量/mol 1-α α 1+α 2+α
Kp==×p。
3.(2020·全国卷Ⅲ,28)二氧化碳催化加氢合成乙烯是综合利用CO2的热点研究领域。回答下列问题:
(1)CO2催化加氢生成乙烯和水的反应中,产物的物质的量之比n(C2H4)∶n(H2O)=________。当反应达到平衡时,若增大压强,则n(C2H4)________(填“变大”“变小”或“不变”)。
(2)理论计算表明,原料初始组成n(CO2)∶n(H2)=1∶3,在体系压强为0.1 MPa,反应达到平衡时,四种组分的物质的量分数x随温度T的变化如图所示。
图中,表示C2H4、CO2变化的曲线分别是________、________。CO2催化加氢合成C2H4反应的ΔH________0(填“大于”或“小于”)。
(3)根据图中点A(440 K,0.39),计算该温度时反应的平衡常数Kp=________(MPa)-3(列出计算式。以分压表示,分压=总压×物质的量分数)。
(4)二氧化碳催化加氢合成乙烯反应往往伴随副反应,生成C3H6、C3H8、C4H8等低碳烃。一定温度和压强条件下,为了提高反应速率和乙烯选择性,应当________________________________________________________________________。
答案 (1)1∶4 变大 (2)d c 小于 (3)× (4)选择合适催化剂等
解析 (1)CO2催化加氢生成乙烯和水的化学方程式为2CO2(g)+6H2(g)C2H4(g)+4H2O(g),产物的物质的量之比n(C2H4)∶n(H2O)=1∶4,该反应是气体体积减小的反应,增大压强平衡右移,则n(C2H4)变大。
(2)由平衡图像知,390 K时四种组分的物质的量分数之比满足1∶3的是c曲线和a曲线,物质的量分数之比满足1∶4的是d曲线和b曲线,结合反应方程式2CO2(g)+6H2(g)C2H4(g)+4H2O(g)和原始投料n(CO2)∶n(H2)=1∶3可得,曲线c表示CO2,曲线a表示H2,曲线d表示C2H4,曲线b表示H2O;由图像的变化趋势可知,升高温度,曲线a、c增大,曲线b、d减小,说明平衡左移,所以正反应放热,ΔH<0。
(3)起始投料比n(CO2)∶n(H2)=1∶3,平衡时总压为0.1 MPa,结合反应方程式可知p(CO2)∶p(H2)=1∶3,p(C2H4)∶p(H2O)=1∶4,由图像可知p(H2)=p(H2O)=0.1 ×0.39,所以p(CO2)=×0.39,p(C2H4)=×0.39。
根据反应的化学方程式
2CO2(g)+ 6H2(g)C2H4(g)+4H2O(g)
平衡时压强: ×0.39 0.1 ×0.39 ×0.39 0.1×0.39
该温度下的平衡常数Kp==(MPa)-3=×
(MPa)-3。
(4)在一定温度和压强下,为了提高反应速率和乙烯的选择性,减少副反应的发生,应当选择合适催化剂等。
4.(2019·海南,14)由γ羟基丁酸生成γ丁内酯的反应如下:
在298 K下,γ羟基丁酸水溶液的初始浓度为0.180 mol·L-1,测得γ丁内酯的浓度随时间变化的数据如表所示。回答下列问题:
t/min
21
50
80
100
120
160
220
∞
c/mol·L-1
0.024
0.050
0.071
0.081
0.090
0.104
0.116
0.132
(1)该反应在50~80 min内的平均反应速率为________mol·L-1·min-1。
(2)120 min时γ羟基丁酸的转化率为________。
(3)298 K时该反应的平衡常数K=______。
(4)为提高γ羟基丁酸的平衡转化率,除适当控制反应温度外,还可采取的措施是________________________________________________________________________。
答案 (1)0.000 7 (2)0.5(50%) (3) (4)将γ丁内酯移走
5.[2019·全国卷Ⅰ,28(1)(2)(4)]水煤气变换[CO(g)+H2O(g)===CO2(g)+H2(g) ΔH<0]是重要的化工过程,主要用于合成氨、制氢以及合成气加工等工业领域中。
回答下列问题:
(1)Shibata曾做过下列实验:①使纯H2缓慢地通过处于721 ℃下的过量氧化钴 CoO(s),氧化钴部分被还原为金属钴Co(s),平衡后气体中H2的物质的量分数为0.025 0。
②在同一温度下用CO还原CoO(s),平衡后气体中CO的物质的量分数为0.019 2。
根据上述实验结果判断,还原CoO(s)为Co(s)的倾向是CO________H2(填“大于”或“小于”)。
(2)721 ℃时,在密闭容器中将等物质的量的CO(g)和H2O(g)混合,采用适当的催化剂进行反应,则平衡时体系中H2的物质的量分数为________(填标号)。
A.<0.25 B.0.25 C.0.25~0.50 D.0.50 E.>0.50
(4)Shoichi研究了467 ℃、489 ℃时水煤气变换中CO和H2分压随时间变化关系(如图所示),催化剂为氧化铁,实验初始时体系中的和pCO相等、和相等。
计算曲线a的反应在30~90 min内的平均速率(a)=________kPa·min-1。467 ℃时和pCO随时间变化关系的曲线分别是________、________。489 ℃时和pCO随时间变化关系的曲线分别是________、________。
答案 (1)大于 (2)C (4)0.004 7 b c a d
解析 (1)由题给信息①可知,H2(g)+CoO(s)Co(s)+H2O(g)(i) K1===39;由题给信息②可知,CO(g)+CoO(s)Co(s)+CO2(g)(ii) K2==≈51.08。相同温度下,平衡常数越大,反应倾向越大,故CO还原氧化钴的倾向大于H2。(2)实验①和②的温度相同,利用盖斯定律,由(ii)-(i)得CO(g)+H2O(g)CO2(g)+H2(g) K==≈1.31。设起始时CO(g)、H2O(g)的物质的量都为1 mol,容器体积为1 L,在721 ℃下,反应达平衡时H2的物质的量为x mol。
CO(g)+H2O(g)H2(g)+CO2(g)
起始/mol 1 1 0 0
转化/mol x x x x
平衡/mol 1-x 1-x x x
K==1.31,若K取1,则x=0.5,φ(H2)=0.25;若K取4,则x≈0.67,φ(H2)≈0.34。氢气的物质的量分数介于0.25与0.34之间,故选C。(4)由题图可知,30~90 min内,(a)=≈0.004 7 kPa·min-1。水煤气变换中CO是反应物,H2是产物,又该反应是放热反应,升高温度,平衡向左移动,重新达到平衡时,H2的压强减小,CO的压强增大。故a曲线代表489 ℃时随时间变化关系的曲线,d曲线代表489 ℃时pCO随时间变化关系的曲线,b曲线代表467 ℃时随时间变化关系的曲线,c曲线代表467 ℃时pCO随时间变化关系的曲线。
6.[2019·全国卷Ⅱ,27(2)(3)改编]环戊二烯()是重要的有机化工原料,广泛用于农药、橡胶、塑料等生产。回答下列问题:
(2)某温度,等物质的量的碘和环戊烯()在刚性容器内发生反应③((g)+I2(g)===(g)+2HI(g) ΔH=89.3 kJ·mol-1),起始总压为105 Pa,平衡时总压增加了20%,环戊烯的转化率为________,该反应的平衡常数Kp=__________Pa。达到平衡后,欲增加环戊烯的平衡转化率,可采取的措施有________(填标号)。
A.通入惰性气体 B.提高温度
C.增加环戊烯浓度 D.增加碘浓度
(3)环戊二烯容易发生聚合生成二聚体,该反应为可逆反应。不同温度下,溶液中环戊二烯浓度与反应时间的关系如图所示,下列说法正确的是________(填标号)。
A.T1>T2
B.a点的反应速率小于c点的反应速率
C.a点的正反应速率大于b点的逆反应速率
D.b点时二聚体的浓度为0.45 mol·L-1
答案 (2)40% 3.56×104 BD (3)CD
解析 (2)设容器中起始加入I2(g)和环戊烯的物质的量均为a,平衡时转化的环戊烯的物质的量为x,列出三段式:
(g) + I2(g)===(g)+2HI(g)
起始: a a 0 0
转化: x x x 2x
平衡: a-x a-x x 2x
根据平衡时总压强增加了20%,且恒温恒容时,压强之比等于气体物质的量之比,得=,解得x=0.4a,则环戊烯的转化率为×100%=40%,平衡时(g)、I2(g)、(g)、HI(g)的分压分别为、、、,则Kp==p总,根据p总=1.2×105 Pa,可得Kp=×1.2×105 Pa≈3.56×104 Pa。通入惰性气体,对反应③的平衡无影响,A项不符合题意;反应③为吸热反应,提高温度,平衡正向移动,可提高环戊烯的平衡转化率,B项符合题意;增加环戊烯浓度,能提高I2(g)的平衡转化率,但环戊烯的平衡转化率降低,C项不符合题意;增加I2(g)的浓度,能提高环戊烯的平衡转化率,D项符合题意。(3)由相同时间内,环戊二烯浓度减小量越大,反应速率越快可知,T1
7.[2019·全国卷Ⅲ,28(1)(3)]近年来,随着聚酯工业的快速发展,氯气的需求量和氯化氢的产出量也随之迅速增长。因此,将氯化氢转化为氯气的技术成为科学研究的热点。回答下列问题:
(1)Deacon发明的直接氧化法为:4HCl(g)+O2(g)===2Cl2(g)+2H2O(g)。如图为刚性容器中,进料浓度比c(HCl)∶c(O2)分别等于1∶1、4∶1、7∶1时HCl平衡转化率随温度变化的关系:
可知反应平衡常数K(300 ℃)________K(400 ℃)(填“大于”或“小于”)。设HCl初始浓度为c0,根据进料浓度比c(HCl)∶c(O2)=1∶1的数据计算K(400 ℃)=____(列出计算式)。按化学计量比进料可以保持反应物高转化率,同时降低产物分离的能耗。进料浓度比c(HCl)∶c(O2)过低、过高的不利影响分别是________、___________________________________________。
(3)在一定温度的条件下,进一步提高HCl的转化率的方法是_______________________________________。(写出2种)
答案 (1)大于 O2和Cl2分离能耗较高 HCl转化率较低 (3)增加反应体系压强、及时除去产物
解析 (1)由题给HCl平衡转化率随温度变化的关系图可知,随温度升高,HCl平衡转化率降低,则此反应为放热反应,温度越高,平衡常数越小,即K(300 ℃)大于K(400 ℃)。结合题图可知,c(HCl)∶c(O2)=1∶1、400 ℃时HCl的平衡转化率为84%,列出三段式:
4HCl(g) + O2(g) === 2Cl2(g)+2H2O(g)
起始 c0 c0 0 0
转化 0.84c0 0.21c0 0.42c0 0.42c0
平衡 (1-0.84)c0 (1-0.21)c0 0.42c0 0.42c0
则K(400 ℃)==;进料浓度比c(HCl)∶c(O2)过低会使O2和Cl2分离的能耗较高,过高则会造成HCl转化率较低。(3)题述反应是气体体积减小的反应,增大反应体系压强可使反应正向移动,提高HCl的转化率,及时分离出产物也能提高HCl的转化率。
8.[2019·天津,7(5)]在1 L真空密闭容器中加入a mol PH4I固体,t ℃时发生如下反应:
PH4I(s)PH3(g)+HI(g)①
4PH3(g)P4(g)+6H2(g)②
2HI(g)H2(g)+I2(g)③
达平衡时,体系中n(HI)=b mol,n(I2)=c mol,n(H2)=d mol,则t ℃时反应①的平衡常数K值为________(用字母表示)。
答案 (b+)b
解析 反应①生成的n(HI)=体系中n(HI)+2×体系中n(I2)=(b+2c) mol,反应②中生成的n(H2)=体系中n(H2)-反应③中生成的n(H2)=(d-c) mol,体系中n(PH3)=反应①生成的n(PH3)-反应②中消耗的n(PH3)=[b+2c-(d-c)] mol=(b+) mol,反应①的平衡常数K=c(PH3)·c(HI)=(b+)b。
题组一 连续反应、竞争反应平衡常数的计算
1.加热N2O5依次发生的分解反应为:①N2O5(g)N2O3(g)+O2(g),②N2O3(g)N2O(g)+O2(g)。在容积为2 L的密闭容器中充入8 mol N2O5,加热到t ℃,达到平衡状态后O2为9 mol,N2O3为3.4 mol。则t ℃时反应①的平衡常数为( )
A.10.7 B.8.5
C.9.6 D.10.2
答案 B
解析 设N2O5的转化浓度为x,N2O3的转化浓度为y。
N2O5(g)N2O3(g)+O2(g)
开始/mol·L-1 4 0 0
转化/mol·L-1 x x x
平衡/mol·L-1 4-x x x
N2O3(g)N2O(g)+O2(g)
开始/mol·L-1 x 0 x
转化/mol·L-1 y y y
平衡/mol·L-1 x-y y x+y
根据题意得
所以x=3.1 mol·L-1
y=1.4 mol·L-1
所以反应①的平衡常数为:
K===8.5。
2.CO2经催化加氢可以生成低碳烃,主要有以下两个竞争反应:
反应Ⅰ:CO2(g)+4H2(g)CH4(g)+2H2O(g)
反应Ⅱ:2CO2(g)+6H2(g)C2H4(g)+4H2O(g)
为分析催化剂对反应的选择性,在1 L密闭容器中充入2 mol CO2和4 mol H2,测得有关物质的物质的量随温度变化如图所示:
该催化剂在较低温度时主要选择______(填“反应Ⅰ”或“反应Ⅱ”)。520 ℃时,反应Ⅰ的平衡常数K=________(只列算式不计算)。
答案 反应Ⅰ
解析 温度较低时,CH4的物质的量多,所以该催化剂在较低温度时主要选择反应Ⅰ。
CO2(g)+4H2(g)CH4(g)+2H2O(g)
转化(mol·L-1) 0.2 0.8 0.2 0.4
2CO2+6H2C2H4(g)+4H2O(g)
转化(mol·L-1) 0.4 1.2 0.2 0.8
c(CO2)=(2-0.2-0.4)mol·L-1=1.4 mol·L-1
c(H2)=(4-0.8-1.2)mol·L-1=2 mol·L-1
c(H2O)=(0.4+0.8)mol·L-1=1.2 mol·L-1
所以K=。
3.在恒容密闭容器中,加入足量的MoS2和O2,仅发生反应:2MoS2(s)+7O2(g)2MoO3(s)+4SO2(g) ΔH。测得氧气的平衡转化率与起始压强、温度的关系如图所示:
(1)p1、p2、p3的大小:________。
(2)若初始时通入7.0 mol O2,p2为7.0 kPa,则A点平衡常数Kp=________(用气体平衡分压代替气体平衡浓度计算,分压=总压×气体的物质的量分数,写出计算式即可)。
答案 (1)p1>p2>p3 (2)(kPa)-3
解析 (1)根据图知,压强一定时,升高温度氧气的转化率降低,平衡逆向移动,则ΔH<0;该反应的正反应是一个气体体积减小的可逆反应,增大压强平衡正向移动,氧气转化率增大,所以压强:p1>p2>p3。(2)若初始时通入7.0 mol O2,p2为7.0 kPa,A点氧气转化率为50%,则A点n(O2)=7.0 mol×(1-50%)=3.5 mol,生成n(SO2)=×4=2 mol,恒温恒容条件下气体压强之比等于物质的量之比,所以A点压强=×7.0 kPa=5.5 kPa,p(O2)=×5.5 kPa=3.5 kPa,p(SO2)=(5.5-3.5)kPa=2 kPa,则A点平衡常数Kp==(kPa)-3=(kPa)-3 。
4.丙烷无氧脱氢法制备丙烯反应如下:
C3H8(g)C3H6(g)+H2(g) ΔH1=+124 kJ·mol-1
(1)总压分别为100 kPa、10 kPa 时发生该反应,平衡体系中C3H8和C3H6的物质的量分数随温度变化关系如图所示:
100 kPa时,C3H8和C3H6的物质的量分数随温度变化关系的曲线分别是______、______。
(2)某温度下,在刚性容器中充入C3H8,起始压强为10 kPa,平衡时总压为13.3 kPa,C3H8的平衡转化率为________。该反应的平衡常数Kp=______kPa(保留1位小数)。
答案 (1)a d (2)33% 1.6
解析 (1)C3H8(g) C3H6(g)+H2(g) ΔH1=+124 kJ·mol-1,正反应吸热,升高温度,平衡正向移动,C3H8(g)的物质的量分数减小,C3H6(g)的物质的量分数增大;根据方程式,该反应为气体体积增大的反应,增大压强,C3H8的物质的量分数大于10 kPa 时C3H8的物质的量分数,因此表示100 kPa时,C3H8的物质的量分数随温度变化关系的曲线是a;增大压强,平衡逆向移动,C3H6的物质的量分数减小,表示100 kPa时,C3H6的物质的量分数随温度变化关系的曲线是d。(2)同温同体积条件下,气体的压强之比等于气体物质的量之比,设C3H8的平衡转化率为x,
C3H8(g)C3H6(g)+H2(g)
起始(kPa) 10 0 0
反应(kPa) 10x 10x 10x
平衡(kPa) 10(1-x) 10x 10x
则10(1-x)+10x+10x=13.3,解得:x=0.33,Kp=≈1.6 kPa。
题组二 速率常数的应用
5.在没有NOx催化时,O3的分解可分为以下两步反应进行:
①O3===O+O2(慢) ②O+O3===2O2(快)
第一步的速率方程为v1=k1c(O3),第二步的速率方程为v2=k2c(O3)·c(O)。其中O为活性氧原子,它在第一步慢反应中生成,然后又很快的在第二步反应中消耗,因此,我们可以认为活性氧原子变化的速率为零。请用k1、k2组成的代数式表示c(O)=________。
答案
解析 由于活性氧原子变化的速率为零,可认为其生成速率等于消耗速率,v1=k1c(O3),v2=k2c(O3)·c(O),则k1c(O3)=k2c(O3)·c(O),所以c(O)=。
6.N2O4与NO2之间存在反应N2O4(g)2NO2(g)。将一定量的N2O4放入恒容密闭容器中,在一定条件下,该反应N2O4、NO2的消耗速率与自身压强间存在关系:v(N2O4)=k1p(N2O4),v(NO2)=k2p2(NO2),其中k1、k2是与反应温度有关的常数。则一定温度下,k1、k2与平衡常数Kp的关系是k1=________。
答案 Kpk2
解析 Kp=,平衡时NO2、N2O4的消耗速率比=v(NO2)∶v(N2O4)=k2p2(NO2)∶k1p(N2O4)=2∶1。
7.已知过氧化氢是一种极弱的二元酸:H2O2H++HO(Ka1=2.4×10-12)。当稀 H2O2溶液在碱性环境下分解时会发生反应 H2O2+OH-HO+H2O,该反应中,正反应速率为
v正=k正·c(H2O2)·c(OH-),逆反应速率为 v逆=k逆·c(H2O)·c(HO ),其中 k正、k逆为速率常数,则k正与k逆的比值为________(保留3位有效数字)。
答案 1.33×104
解析 水的物质的量浓度约为55.6 mol·L-1,
===≈1.33×104。
8.工业上利用CH4(混有CO和H2)与水蒸气在一定条件下制取H2,原理为CH4(g)+H2O(g)CO(g)+3H2(g)该反应的逆反应速率表达式为v逆=k·c(CO)·c3(H2),k为速率常数,在某温度下测得实验数据如表所示:
CO浓度/(mol·L-1)
H2浓度/(mol·L-1)
逆反应速率/(mol·L-1·min-1)
0.1
c1
8.0
c2
c1
16.0
c2
0.15
6.75
由上述数据可得该温度下,c2=________mol·L-1,该反应的逆反应速率常数k=________L3·mol-3·min-1。
答案 0.2 1.0×104
解析 根据v逆=k·c(CO)·c3(H2),由表中数据可得:c=,c2=,所以有k××=16.0 mol·L-1·min-1,解得k=1.0×104 L3·mol-3·min-1,代入c2的等式可得c2=0.2 mol·L-1。
高考化学二轮复习(新高考版) 第1部分 专题10 大题题空逐空突破(十七) 合成路线的分析与设计(含解析): 这是一份高考化学二轮复习(新高考版) 第1部分 专题10 大题题空逐空突破(十七) 合成路线的分析与设计(含解析),共11页。试卷主要包含了有机合成中官能团的转变,常见有机物转化应用举例,有机合成路线设计的几种常见类型等内容,欢迎下载使用。
高考化学二轮复习(新高考版) 第1部分 专题8 大题题空逐空突破(十一) 沉淀洗涤集训(含解析): 这是一份高考化学二轮复习(新高考版) 第1部分 专题8 大题题空逐空突破(十一) 沉淀洗涤集训(含解析),共5页。
高考化学二轮复习(新高考版) 第1部分 专题7 大题题空逐空突破(十) 最佳反应条件、原因解释集训(含解析): 这是一份高考化学二轮复习(新高考版) 第1部分 专题7 大题题空逐空突破(十) 最佳反应条件、原因解释集训(含解析),共6页。