|试卷下载
终身会员
搜索
    上传资料 赚现金
    2023年湖北省潜江、天门、仙桃、江汉油田中考数学真题(含解析)
    立即下载
    加入资料篮
    2023年湖北省潜江、天门、仙桃、江汉油田中考数学真题(含解析)01
    2023年湖北省潜江、天门、仙桃、江汉油田中考数学真题(含解析)02
    2023年湖北省潜江、天门、仙桃、江汉油田中考数学真题(含解析)03
    还剩28页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2023年湖北省潜江、天门、仙桃、江汉油田中考数学真题(含解析)

    展开
    这是一份2023年湖北省潜江、天门、仙桃、江汉油田中考数学真题(含解析),共31页。试卷主要包含了这组数据的中位数和众数分别是等内容,欢迎下载使用。

    潜江 天门 仙桃 江汉 油田2023年初中学业水平考试(中考)
    数学试卷
    (本卷共6页,满分120分,考试时间120分钟)
    注意事项:
    1.答题前,考生务必将自己的姓名,准考证号填写在试卷第1页装订线内和答题卡上,并在答题卡的规定位置贴好条形码,核准姓名和准考证号.
    2.选择题的答案选出后,必须使用2B铅笔把答题卡上对应的答案标号涂黑.如需改动,先用橡皮擦干净后,再选涂其他答案标号.非选择题答案必须使用0,5mm黑色墨水签字笔填写在答题卡对应的区域内,写在本试卷上无效.
    3.考试结束后,请将本试卷和答题卡一并交回.
    一、选择题(本大题共10个小题,每小题3分,满分30分.在下列每个小题给出的四个答案中有且只有一个正确答案,请将正确答案的字母代号在答题卡上涂黑,涂错或不涂均为零分)
    1. 的绝对值是( )
    A. B. C. D.
    【答案】D
    【解析】
    【分析】根据绝对值的性质即可求出答案.
    【详解】解:.
    故选:D.
    【点睛】本题考查了绝对值,解题的关键在于熟练掌握绝对值的性质,负数的绝对值等于这个负数的相反数.
    2. 2023年全国高考报名人数约12910000人,数12910000用科学记数法表示为( )
    A. B. C. D.
    【答案】B
    【解析】
    【分析】用科学记数法表示较大的数时,一般形式为,其中,为整数,据此判断即可.
    【详解】解:数12910000用科学记数法表示为.
    故选:B.
    【点睛】本题考查了科学记数法,科学记数法的表示形式为的形式,其中,为整数.确定的值时,要看把原来的数,变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同.
    3. 如图是一个立体图形的三视图,该立体图形是( )

    A 三棱柱 B. 圆柱 C. 三棱锥 D. 圆锥
    【答案】D
    【解析】
    【分析】根据主视图和左视图确定是柱体、锥体、球体,再由俯视图确定具体形状.
    【详解】解:由主视图和左视图为三角形判断出是锥体,
    根据俯视图是圆可判断出这个几何体应该是圆锥.
    故选:D.
    【点睛】本题考查了由物体的三种视图确定几何体的形状,考查了学生的思考能力和对几何体三种视图的空间想象能力和综合能力.
    4. 不等式组的解集是( )
    A. B. C. D.
    【答案】A
    【解析】
    【分析】先求出每个不等式的解集,再根据 “同大取大,同小取小,大小小大中间找,大大小小找不到(无解)”求出不等式组的解集.
    【详解】解:
    解不等式①得:,
    解不等式②得:,
    ∴不等式组的解集为,
    故选A.
    【点睛】本题主要考查了解一元一次不等式组,正确求出每个不等式的解集是解题的关键.
    5. 某班9名学生参加定点投篮测试,每人投篮10次,投中的次数统计如下:3,6,4,6,4,3,6,5,7.这组数据的中位数和众数分别是( )
    A. 5,4 B. 5,6 C. 6,5 D. 6,6
    【答案】B
    【解析】
    【分析】根据中位数和众数的定义即可求出答案.
    【详解】解:这组数据3,6,4,6,4,3,6,5,7中出现次数最多的是6,
    众数是6.
    将这组数据3,6,4,6,4,3,6,5,7按从小到大顺序排列是3,3,4,4,5,6, 6, 6, 7,
    中位数为:5.
    故选:B
    【点睛】本题考查了中位数和众数,解题的关键在于熟练掌握中位数和众数的概念,中位数是指将一组数据按大小顺序排列,若一组数据为奇数个,处在最中间位置的一个数叫做这组数据的中位数;若一组数据是偶数,则处在最中间的两个数的平均数为这组数据的中位数;众数指的是在一组数据中出现次数最多的数叫做这组数据的众数.
    6. 在反比例函数的图象上有两点,当时,有,则的取值范围是( )
    A. B. C. D.
    【答案】C
    【解析】
    【分析】根据题意可得反比例函数图象在一三象限,进而可得,解不等式即可求解.
    【详解】解:∵当时,有,
    ∴反比例函数的图象在一三象限,

    解得:,
    故选:C.
    【点睛】本题考查了反比例函数图象性质,根据题意得出反比例函数的图象在一三象限是解题的关键.
    7. 如图,在的正方形网格中,小正方形的顶点称为格点,顶点均在格点上的图形称为格点图形,图中的圆弧为格点外接圆的一部分,小正方形边长为1,图中阴影部分的面积为( )

    A. B. C. D.
    【答案】D
    【解析】
    【分析】根据网格的特点作的垂直平分线,作的垂直平分线,设与相交于点O,连接,则点O是外接圆的圆心,先根据勾股定理的逆定理证明是直角三角形,从而可得,然后根据,进行计算即可解答.
    【详解】解:如图:作的垂直平分线,作的垂直平分线,设与相交于点O,连接,则点O是外接圆的圆心,

    由题意得:,,,
    ∴,
    ∴是直角三角形,
    ∴,
    ∵,





    故选:D.
    【点睛】本题考查了三角形的外接圆与外心,扇形面积的计算,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.
    8. 如图,在中,,点在边上,且平分的周长,则的长是( )

    A. B. C. D.
    【答案】C
    【解析】
    【分析】如图所示,过点B作于E,利用勾股定理求出,进而利用等面积法求出,则可求出,再由平分的周长,求出,进而得到,则由勾股定理得.
    【详解】解:如图所示,过点B作于E,
    ∵在中,,
    ∴,
    ∵,
    ∴,
    ∴,
    ∵平分的周长,
    ∴,即,
    又∵,
    ∴,
    ∴,
    ∴,
    故选C.
    【点睛】本题主要考查了勾股定理,正确作出辅助线构造直角三角形是解题的关键.
    9. 拋物线与轴相交于点.下列结论:
    ①;②;③;④若点在抛物线上,且,则.其中正确的结论有( )
    A. 1个 B. 2个 C. 3个 D. 4个
    【答案】B
    【解析】
    【分析】二次函数整理得,推出,可判断①错误;根据二次函数的的图象与x轴的交点个数可判断②正确;由,代入可判断③正确;根据二次函数的性质及数形结合思想可判断④错误.
    【详解】解:①由题意得:,
    ∴,
    ∵,
    ∴,
    ∴,故①错误;
    ②∵抛物线与x轴相交于点.
    ∴有两个不相等的实数根,
    ∴,故②正确;
    ③∵,
    ∴,故③正确;
    ④∵抛物线与x轴相交于点.
    ∴抛物线的对称轴为:,
    当点在抛物线上,且,
    ∴或,
    解得:,故④错误,
    综上,②③正确,共2个,
    故选:B.
    【点睛】本题考查了二次函数与系数的关系,掌握二次函数的性质及数形结合思想是解题的关键.
    10. 如图,长方体水池内有一无盖圆柱形铁桶,现用水管往铁桶中持续匀速注水,直到长方体水池有水溢出一会儿为止.设注水时间为(细实线)表示铁桶中水面高度,(粗实线)表示水池中水面高度(铁桶高度低于水池高度,铁桶底面积小于水池底面积的一半,注水前铁桶和水池内均无水),则随时间变化的函数图象大致为( )

    A. B. C. D.
    【答案】C
    【解析】
    【分析】根据特殊点的实际意义即可求出答案.
    【详解】解:根据图象知,时,铁桶注满了水,,是一条斜线段,,是一条水平线段,
    当时,长方体水池开始注入水;当时,长方体水池中的水没过铁桶,水池中水面高度比之开始变得平缓;当时,长方体水池满了水,
    ∴开始是一段陡线段,后变缓,最后是一条水平线段,
    观察函数图象,选项C符合题意,
    故选:C.
    【点睛】本题主要考查了函数图象的读图能力.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.
    二、填空题(本大题共5个小题,每小题3分,满分15分,请将答案直接填在答线卡对应的横线上)
    11. 计算的结果是_________.
    【答案】1
    【解析】
    【分析】先计算零指数幂,负整数指数幂和化简二次根式,然后计算加减法即可.
    【详解】解:


    故答案为:1.
    【点睛】本题主要考查了化简二次根式,零指数幂和负整数指数幂,正确计算是解题的关键.
    12. 在平面直角坐标系中,若反比例函数的图象经过点和点,则的面积为_________.
    【答案】
    【解析】
    【分析】利用待定系数法求出反比例函数解析式,从而求出点坐标,画图,最后利用割补法即可求出的面积.
    【详解】解:反比例函数的图象经过点,


    反比例函数为:.
    反比例函数的图象经过点,


    如图所示,过点作于,过点作的延长线于,设与轴的交点为,

    ,,
    ,,,

    故答案为:.
    【点睛】本题考查了反比例函数,涉及到待定系数求解析式,反比例函数与三角形面积问题,解题的关键需要画出图形以及利用割补法求出面积.
    13. 如图,在中,的内切圆与分别相切于点,,连接的延长线交于点,则_________.

    【答案】##度
    【解析】
    【分析】如图所示,连接,设交于H,由内切圆的定义结合三角形内角和定理求出,再由切线长定理得到,进而推出是的垂直平分线,即,则.
    【详解】解:如图所示,连接,设交于H,
    ∵是的内切圆,
    ∴分别是的角平分线,
    ∴,
    ∵,
    ∴,
    ∴,
    ∴,
    ∵与分别相切于点,,
    ∴,
    又∵,
    ∴是的垂直平分线,
    ∴,即,
    ∴,
    故答案为:.
    【点睛】本题主要考查了三角形内切圆,切线长定理,三角形内角和定理,线段垂直平分线的判定,三角形外角的性质,正确作出辅助线是解题的关键.
    14. 有四张背面完全相同的卡片,正面分别画了等腰三角形,平行四边形,正五边形,圆,现将卡片背面朝上并洗匀,从中随机抽取一张,记下卡片上的图形后(不放回),再从中随机抽取一张,则抽取的两张卡片上的图形都是中心对称图形的概率为_________.
    【答案】
    【解析】
    【分析】用树状图表示所有情况的结果,然后找出抽取的两张卡片上的图形都是中心对称图形的情况,最后根据概率公式计算即可.
    【详解】解:分别用,,,表示等腰三角形,平行四边形,正五边形,圆,画树状图如下:

    依题意和由图可知,共有12种等可能的结果数,其中两次抽出的图形都是中心对称图形的占2种,
    两次抽出的图形都是中心对称图形的概率为:.
    故答案为.
    【点睛】本题考查了树状图法,中心对称图形,解题的关键在于熟练掌握概率公式以及正确理解题意(拿出卡片不放回).
    15. 如图,和都是等腰直角三角形,,点在内,,连接交于点交于点,连接.给出下面四个结论:①;②;③;④.其中所有正确结论的序号是_________.

    【答案】①③④
    【解析】
    【分析】由题意易得,,,,则可证,然后根据全等三角形的性质及平行四边形的性质与判定可进行求解.
    【详解】解:∵和都是等腰直角三角形,
    ∴,,,,
    ∵,,
    ∴,故①正确;
    ∴,
    ∴,,故③正确;
    ∵,,,
    ∴,;故②错误;
    ∴,
    ∵,
    ∴四边形是平行四边形,
    ∴,故④正确;
    故答案为①③④.
    【点睛】本题主要考查全等三角形的性质与判定、等腰直角三角形的性质及平行四边形的性质与判定,熟练掌握全等三角形的性质与判定、等腰直角三角形的性质及平行四边形的性质与判定是解题的关键.
    三、解答题(本大题共9个题,满分75分)
    16. (1)计算:;
    (2)解分式方程:.
    【答案】(1);(2)
    【解析】
    【分析】(1)根据多项式除以单项式及单项式乘以多项式可进行求解;
    (2)根据分式方程的解法可进行求解.
    【详解】(1)解:原式


    (2)解:两边乘以,得.
    解得:.
    检验,将代入.
    ∴是原分式方程的解.
    【点睛】本题主要考查多项式除以单项式、单项式乘以多项式及分式方程的解法,熟练掌握各个运算是解题的关键.
    17. 为了解学生“防诈骗意识”情况,某校随机抽取了部分学生进行问卷调查,根据调查结果将“防诈骗意识”按A(很强),B(强),C(一般),D(弱),E(很弱)分为五个等级.将收集的数据整理后,绘制成如下不完整的统计图表.

    等级
    人数
    A(很强)
    a
    B(强)
    b
    C(一般)
    20
    D(弱)
    19
    E(很弱)
    16

    (1)本次调查的学生共_________人;
    (2)已知,请将条形统计图补充完整;
    (3)若将A,B,C三个等级定为“防诈骗意识”合格,请估计该校2000名学生中"防诈骗意识”合格的学生有多少人?
    【答案】(1)共100人
    (2)见解析 (3)估计该校2000名学生中“防诈骗意识”合格的学生有1300人
    【解析】
    【分析】(1)根据统计图可进行求解;
    (2)由(1)及可求出a、b的值,然后问题可求解;
    (3)根据统计图及题意可直接进行求解.
    【小问1详解】
    解:由统计图可知:(人);
    故答案为100;
    【小问2详解】
    解:由(1)得:,
    ∵,
    ∴,
    补全条形统计图如下:
    【小问3详解】
    解:由题意得:
    (人).
    ∴估计该校2000名学生中“防诈骗意识”合格的学生有1300人.
    【点睛】本题主要考查条形统计图及扇形统计图,解题的关键是理清统计图中的各个数据.
    18. 为了防洪需要,某地决定新建一座拦水坝,如图,拦水坝的横断面为梯形,斜面坡度是指坡面的铅直高度与水平宽度的比.已知斜坡长度为20米,,求斜坡的长.(结果精确到米)(参考数据:)

    【答案】斜坡的长约为10米
    【解析】
    【分析】过点作于点,在中,利用正弦函数求得,在中,利用勾股定理即可求解.
    【详解】解:过点作于点,则四边形是矩形,

    在中,,

    ∴.
    ∵,
    ∴在中,(米).
    答:斜坡的长约为10米.
    【点睛】此题考查的是解直角三角形的应用-坡度坡角问题,掌握坡度坡角的概念、熟记锐角三角函数的定义是解题的关键.
    19. 已知正六边形,请仅用无刻度的直尺完成下列作图(保留作图痕迹,不写作法,用虚线表示作图过程,实线表示作图结果).

    (1)在图1中作出以为对角线的一个菱形;
    (2)在图2中作出以为边的一个菱形.
    【答案】(1)见解析 (2)见解析
    【解析】
    【分析】(1)根据菱形的性质对角线互相垂直平分即可作出图形.
    (2)根据菱形的性质四条边平行且相等即可作出图形.
    【小问1详解】
    解:如图,菱形即为所求(点,可以对调位置):

    【小问2详解】
    解:如图,菱形即为所求.
    是菱形,且要求为边,
    ①当为上底边的时候,作,且,向右下偏移,如图所示,

    ②当为上底边的时候,作,且,向左下偏移如图所示,

    ③当为下底边的时候,作,且,向左上偏移如图所示,

    ④当为下底边的时候,作,且,向右上偏移如图所示,

    【点睛】本题考查了作图-复杂作图,复杂作图是结合了几何图形的性质和基本作图的方法,涉及到的知识点有菱形的性质和判定,解题的关键在于熟悉菱形的几何性质和正六边形的几何性质,将复杂作图拆解成基本作图.
    20. 已知关于x的一元二次方程.
    (1)求证:无论m取何值时,方程都有两个不相等的实数根;
    (2)设该方程的两个实数根为a,b,若,求m的值.
    【答案】(1)证明见解析
    (2)的值为1或
    【解析】
    【分析】(1)根据一元二次方程根的判别式可进行求解;
    (2)根据一元二次方程根与系数的关系可进行求解.
    【小问1详解】
    证明:∵,
    ∴无论取何值,方程都有两个不相等的实数根.
    【小问2详解】
    解:∵的两个实数根为,
    ∴.
    ∵,
    ∴,.
    ∴.
    即.
    解得或.
    ∴的值为1或.
    【点睛】本题主要考查一元二次方程根的判别式及根与系数的关系,熟练掌握一元二次方程根的判别式及根与系数的关系是解题的关键.
    21. 如图,将边长为3的正方形沿直线折叠,使点的对应点落在边上(点不与点重合),点落在点处,与交于点,折痕分别与边,交于点,连接.

    (1)求证:;
    (2)若,求的长.
    【答案】(1)证明见解析
    (2)
    【解析】
    【分析】(1)由折叠和正方形的性质得到,则,进而证明,再由平行线的性质证明即可证明;
    (2)如图,延长交于点.证明得到,,
    设,则,.由,得到.则.由勾股定理建立方程,解方程即可得到.
    【小问1详解】
    证明:由翻折和正方形的性质可得,.
    ∴.
    ∴,即,
    ∵四边形是正方形,
    ∴.
    ∴.
    ∴.
    【小问2详解】
    解:如图,延长交于点.
    ∵,
    ∴.
    又∵,正方形边长为3,

    ∴,
    ∴,,
    设,则,
    ∴.
    ∵,即,
    ∴.
    ∴.
    在中,,
    ∴.
    解得:(舍),.
    ∴.
    【点睛】本题主要考查了正方形与折叠问题,相似三角形的性质与判定,等腰三角形的性质与判定,勾股定理等等,正确作出辅助线构造相似三角形是解题的关键.
    22. 某商店销售某种商品的进价为每件30元,这种商品在近60天中的日销售价与日销售量的相关信息如下表:

    时间:第x(天)


    日销售价(元/件)

    50
    日销售量(件)

    (,x为整数)
    设该商品的日销售利润为w元.
    (1)直接写出w与x的函数关系式__________________;
    (2)该商品在第几天的日销售利润最大?最大日销售利润是多少?
    【答案】(1)
    (2)该商品在第26天的日销售利润最大,最大日销售利润是1296元
    【解析】
    【分析】(1)根据利润=单个利润×数量可进行求解;
    (2)由(1)分别求出两种情况下的最大利润,然后问题可求解.
    【小问1详解】
    解:由题意得:
    当时,则;
    当时,则;
    ∴;
    【小问2详解】
    解:当时,;
    ∵抛物线开口向下,对称轴为直线,
    ∴当时,(元).
    当时,,随增大而减小,
    ∴当时,(元).
    ∵,
    ∴该商品在第26天的日销售利润最大,最大日销售利润是1296元.
    【点睛】本题主要考查二次函数与一次函数的应用,熟练掌握一次函数与二次函数的性质是解题的关键.
    23. 如图,等腰内接于,,是边上的中线,过点作的平行线交的延长线于点,交于点,连接.

    (1)求证:为的切线;
    (2)若的半径为,,求的长.
    【答案】(1)证明见解析
    (2)
    【解析】
    【分析】(1)证明,得出,则四边形是平行四边形,,作于.得出为的垂直平分线.则.又点在上,即可得证;
    过点作于,连接.垂径定理得出,勾股定理得,进而可得,勾股定理求得,证明,可得,根据相似三角形的性质得出,,然后求得,勾股定理求得,证明,根据相似三角形的性质即可求解.
    【小问1详解】
    证明,∵,
    ∴.
    又,
    ∴.
    ∴.
    ∴四边形是平行四边形.
    ∴.
    作于.

    又∵,
    ∴为的垂直平分线.
    ∴点在上.
    ∴.
    即.又点在上,
    ∴为的切线;
    【小问2详解】
    解:过点作于,连接.

    ∵为的垂直平分线,
    ∴.
    ∴.∴.
    ∴.
    ∴.
    ∵,

    ∴,
    又,
    ∴.
    ∴,.
    ∴.
    ∴.
    ∵,
    ∴.
    ∴.
    ∴.
    ∴.
    【点睛】本题考查了切线的判定,垂径定理,相似三角形的性质与判定,熟练掌握相似三角形的性质与判定是解题的关键.
    24. 如图1,在平面直角坐标系中,已知抛物线与轴交于点,与轴交于点,顶点为,连接.

    (1)抛物线的解析式为__________________;(直接写出结果)
    (2)在图1中,连接并延长交的延长线于点,求的度数;
    (3)如图2,若动直线与抛物线交于两点(直线与不重合),连接,直线与交于点.当时,点的横坐标是否为定值,请说明理由.
    【答案】(1)
    (2)
    (3),理由见解析
    【解析】
    【分析】(1)待定系数法求解析式即可求解;
    (2)待定系数法求得直线直线的解析式为:,直线的解析式为:.联立两直线解析式,得出点的坐标为.方法1:由题意可得:.过点E作轴于点F.计算得出,又,可得,根据相似三角形的性质得出;方法2:如图2,延长与轴交于点,过点作于点,过点作轴于点.等面积法求得,解即可求解.方法3:如图2,过点作于点.根据,得出,进而得出;
    (3)设点坐标为,点的坐标为.由点,点,可得到直线的解析式为:.得出点的坐标可以表示为.由点,点,得直线的解析式为:.同理可得可得到直线的解析式为:.联立可得,则点的横坐标为定值3.
    【小问1详解】
    解:∵抛物线与轴交于点,
    ∴,
    解得:,
    ∴抛物线解析式为;
    【小问2详解】
    ∵点,点,
    设直线的解析式为:.
    ∴,
    ∴,
    直线的解析式为:.
    同上,由点,可得直线的解析式为:.
    令,得.
    ∴点的坐标为.
    方法1:由题意可得:.
    ∴.
    如图1,过点E作轴于点F.
    ∴.
    ∴.
    ∴.
    又,
    ∴.
    ∴.
    ∵,
    ∴.
    ∵,
    即.

    方法2:如图2,延长与轴交于点,过点作于点,过点作轴于点.
    ∵,
    ∴.
    ∴.
    ∴.
    ∴.
    ∴.
    ∵,

    ∴.

    ∴,即.


    方法3:如图2,过点作于点.
    ∵.
    ∴.
    ∵,
    ∴.
    ∴.
    【小问3详解】
    设点的坐标为,点的坐标为.
    ∵直线与不重合,
    ∴且且.
    如图3,由点,点,

    可得到直线的解析式为:.
    ∵,
    ∴可设直线的解析式为:.
    将代入,
    得.
    ∴.
    ∴点的坐标可以表示为.
    设直线的解析式为:,
    由点,点,得

    解得.
    ∴直线的解析式为:.
    同上,由点,点,
    可得到直线的解析式为:.
    ∴.
    ∴.
    ∴.
    ∴点的横坐标为定值3.
    【点睛】本题考查了二次函数综合问题,解直角三角形,待定系数法求解析式,一次函数的平移,熟练掌握二次函数的性质是解题的关键.

    相关试卷

    2023年湖北省潜江、天门、仙桃、江汉油田中考数学真题(解析版): 这是一份2023年湖北省潜江、天门、仙桃、江汉油田中考数学真题(解析版),共30页。试卷主要包含了这组数据的中位数和众数分别是等内容,欢迎下载使用。

    2022年湖北省江汉油田、潜江、天门、仙桃中考数学真题(解析版): 这是一份2022年湖北省江汉油田、潜江、天门、仙桃中考数学真题(解析版),共30页。试卷主要包含了01,0, 下列各式计算正确的是等内容,欢迎下载使用。

    2023年湖北省潜江、天门、仙桃、江汉油田中考数学真题(含解析): 这是一份2023年湖北省潜江、天门、仙桃、江汉油田中考数学真题(含解析),共31页。试卷主要包含了这组数据的中位数和众数分别是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map