终身会员
搜索
    上传资料 赚现金

    2023年山东省滨州市中考数学真题(含解析)

    立即下载
    加入资料篮
    2023年山东省滨州市中考数学真题(含解析)第1页
    2023年山东省滨州市中考数学真题(含解析)第2页
    2023年山东省滨州市中考数学真题(含解析)第3页
    还剩20页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2023年山东省滨州市中考数学真题(含解析)

    展开

    这是一份2023年山东省滨州市中考数学真题(含解析),共23页。
    滨州市二〇二三年初中学业水平考试
    数学试题
    温馨提示:
    1.本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页,满分120分,考试用时120分钟.考试结束后,将试题卷和答题卡一并交回.
    2.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、准考证号、座号填写在试题卷和答题卡规定的位置上.
    3.第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其它答案标号,答案不能答在试题卷上;
    4.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.
    第Ⅰ卷(选择题 共24分)
    一、选择题:本大题共8个小题;在每小题的四个选项中只有一个是正确的,请把正确的选项选出来,用2B铅笔把答题卡上对应题目的答案标号涂黑.每小题涂对得3分,满分24分.
    1. ﹣3的相反数是( )
    A. B. C. D.
    【答案】D
    【解析】
    【分析】相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,0的相反数还是0.
    【详解】根据相反数的定义可得:-3的相反数是3,
    故选D.
    【点睛】本题考查相反数,题目简单,熟记定义是关键.

    2. 下列计算,结果正确的是(  )
    A. B. C. D.
    【答案】A
    【解析】
    【分析】根据同底数幂的乘法可判断A,根据幂的乘方可判断B,根据积的乘方可判断C,根据整数指数幂的运算可判断D,从而可得答案.
    【详解】解:,运算正确,故A符合题意;
    ,原运算错误,故B不符合题意;
    ,原运算错误,故C不符合题意;
    ,原运算错误,故D不符合题意;
    故选A.
    【点睛】本题考查的是同底数幂的乘法,幂的乘方,积的乘方,同底数幂的除法运算,负整数指数幂的含义,整数指数幂的运算,熟记运算法则是解本题的关键.
    3. 如图所示摆放的水杯,其俯视图为(  )

    A. B. C. D.
    【答案】D
    【解析】
    【分析】根据从上边看得到的图形是俯视图,可得答案.
    【详解】解:俯视图是从上面看到的图形,应该是:

    故选:D.
    【点睛】本题主要考查简单几何体的三视图,掌握俯视图是从上边看得到的图形是解题的关键.
    4. 一元二次方程根的情况为(  )
    A. 有两个不相等的实数根 B. 有两个相等的实数根 C. 没有实数根 D. 不能判定
    【答案】A
    【解析】
    【分析】根据题意,求得,根据一元二次方程根的判别式的意义,即可求解.
    【详解】解:∵一元二次方程中,,
    ∴,
    ∴一元二次方程有两个不相等的实数根,
    故选:A.
    【点睛】本题考查了一元二次方程的根的判别式的意义,熟练掌握一元二次方程根的判别式的意义是解题的关键.
    5. 由化学知识可知,用表示溶液酸碱性的强弱程度,当时溶液呈碱性,当时溶液呈酸性.若将给定的溶液加水稀释,那么在下列图象中,能大致反映溶液的与所加水的体积之间对应关系的是(  )
    A. B. C. D.
    【答案】B
    【解析】
    【分析】根据题意,溶液呈碱性,随着加入水的体积的增加,溶液的浓度越来越低,的值则接近7,据此即可求解.
    【详解】解:∵溶液呈碱性,则,随着加入水的体积的增加,溶液的浓度越来越低,的值则接近7,
    故选:B.
    【点睛】本题考查了函数的图象,数形结合是解题的关键.
    6. 在某次射击训练过程中,小明打靶次的成绩(环)如下表所示:
    靶次
    第次
    第次
    第次
    第次
    第次
    第次
    第次
    第次
    第次
    第次
    成绩(环)










    则小明射击成绩的众数和方差分别为(  )
    A. 和 B. 和 C. 和 D. 和
    【答案】C
    【解析】
    【分析】根据众数的定义,以及方差的定义,即可求解.
    【详解】解:这组数据中,10出现了4次,故众数为10,
    平均数为:,
    方差为,
    故选:C.
    【点睛】本题考查了众数的定义,以及方差的定义,熟练掌握众数的定义,以及方差的定义是解题的关键.众数:在一组数据中出现次数最多的数.方差:一般地,各数据与平均数的差的平方的平均数叫做这组数据的方差..
    7. 如图,某玩具品牌的标志由半径为的三个等圆构成,且三个等圆相互经过彼此的圆心,则图中三个阴影部分的面积之和为(  )

    A. B. C. D.
    【答案】C
    【解析】
    【分析】根据圆的对称性可知:图中三个阴影部分的面积相等,只要计算出一个阴影部分的面积即可,如图,连接,阴影的面积=扇形的面积,据此即可解答.
    【详解】解:根据圆的对称性可知:图中三个阴影部分的面积相等;
    如图,连接,则,是等边三角形,
    ∴,弓形的面积相等,
    ∴阴影的面积=扇形的面积,
    ∴图中三个阴影部分的面积之和;
    故选:C.
    【点睛】本题考查了不规则图形面积的计算,正确添加辅助线、掌握求解的方法是解题关键.
    8. 已知点是等边的边上的一点,若,则在以线段为边的三角形中,最小内角的大小为(  )
    A. B. C. D.
    【答案】B
    【解析】
    【分析】将绕点逆时针旋转得到,可得以线段为边的三角形,即,最小的锐角为,根据邻补角以及旋转的性质得出,进而即可求解.
    【详解】解:如图所示,将绕点逆时针旋转得到,

    ∴,,,
    ∴是等边三角形,
    ∴,
    ∴以线段为边的三角形,即,最小的锐角为,
    ∵,


    ∴,
    故选:B.
    【点睛】本题考查了旋转的性质,等边三角形的性质与判定,熟练掌握旋转的性质是解题的关键.
    第Ⅱ卷(非选择题 共96分)
    二、填空题:本大题共8个小题,每小题3分,满分24分.
    9. 计算结果为___________.
    【答案】
    【解析】
    【分析】化简绝对值,根据有理数的运算法则进行计算即可.
    【详解】,
    故答案为:.
    【点睛】本题考查有理数的加减法则,熟练掌握有理数的加减法则是解题的关键.
    10. 一块面积为的正方形桌布,其边长为___________.
    【答案】##米
    【解析】
    【分析】由正方形的边长是其面积的算术平方根可得答案.
    【详解】解:一块面积为的正方形桌布,其边长为,
    故答案为:
    【点睛】本题考查的是算术平方根的含义,理解题意,利用算术平方根的含义表示正方形的边长是解本题的关键.
    11. 不等式组的解集为___________.
    【答案】
    【解析】
    【分析】分别解两个不等式,再取两个解集的公共部分即可.
    【详解】解:,
    由①得:,
    由②得:,
    ∴不等式组的解集为:;
    故答案为:
    【点睛】本题考查的是一次不等式组的解法,掌握一元一次不等式组的解法步骤与方法是解本题的关键.
    12. 如图,在平面直角坐标系中,的三个顶点坐标分别为.若将向左平移3个单位长度得到,则点A的对应点的坐标是___________.

    【答案】
    【解析】
    【分析】根据平移的性质即可得出答案.
    【详解】将向左平移3个单位长度得到,


    故答案为:.
    【点睛】本题考查平移的性质,熟知左右平移纵坐标不变是解题的关键.
    13. 同时掷两枚质地均匀的骰子,则两枚骰子点数之和等于7的概率是___________.
    【答案】
    【解析】
    【分析】利用表格或树状图列示出所有可能结果,找出满足条件的结果,根据概率公式计算即可.
    【详解】所有可能结果如下表 ,

    所有结果共有36种,其中,点数之和等于7的结果有6种,概率为
    故答案为:.
    【点睛】本题考查概率的计算,运用列表或树状图列示出所有可能结果是解题的关键.
    14. 如图,分别与相切于两点,且.若点是上异于点的一点,则的大小为___________.

    【答案】或
    【解析】
    【分析】根据切线的性质得到,根据四边形内角和为,得出,然后根据圆周角定理即可求解.
    【详解】解:如图所示,连接,当点在优弧上时,

    ∵分别与相切于两点
    ∴,
    ∵.

    ∵,
    ∴,
    当点在上时,
    ∵四边形是圆内接四边形,
    ∴,
    故答案为:或.
    【点睛】本题考查了切线的性质,圆周角定理,多边形内角和,熟练掌握切线的性质与圆周角定理是解题的关键.
    15. 要修一个圆形喷水池,在池中心竖直安装一根水管,水管顶端安一个喷水头,使喷出的抛物线形水柱在与池中心的水平距离为处达到最高,高度为,水柱落地处离池中心,水管长度应为____________.

    【答案】##2.25米##米##m##米##m
    【解析】
    【分析】以池中心为原点,竖直安装的水管为y轴,与水管垂直的水平面为x轴建立直角坐标系,设抛物线的解析式为,将代入求得a值,则时得的y值即为水管的长.
    【详解】解:以池中心为原点,竖直安装的水管为y轴,与水管垂直的水平面为x轴建立直角坐标系.
    由于在距池中心的水平距离为时达到最高,高度为,
    则设抛物线的解析式为:

    代入求得:.
    将值代入得到抛物线的解析式为:,
    令,则.
    故水管长度为.
    故答案为:.
    【点睛】本题考查了二次函数在实际生活中的运用,重点是二次函数解析式的求法,正确建立平面直角坐标系是解题的关键.
    16. 如图,矩形的对角线相交于点,点分别是线段上的点.若,则的长为___________.

    【答案】
    【解析】
    【分析】过点分别作的垂线,垂足分别为,等面积法证明,进而证明,,根据全等三角形的性质得出,,根据已知条件求得,进而勾股定理求得,进而即可求解.
    【详解】解:如图所示,过点分别作的垂线,垂足分别为,

    ∵四边形是矩形,
    ∴,
    ∵,
    ∴,
    ∴,
    ∴,
    ∵,



    在中,


    ∴,


    解得:

    在中,,
    在中,
    ∴,
    故答案为:.
    【点睛】本题考查了矩形的性质,全等三角形的性质与判定,勾股定理,熟练掌握以上知识是解题的关键.
    三、解答题:本大题共6个小题,满分72分.解答时请写出必要的演推过程.
    17. 中共中央办公厅、国务院办公厅印发的《关于进一步减轻义务教育阶段学生作业负担和校外培训负担的意见》中,对学生每天的作业时间提出明确要求:“初中书面作业平均完成时间不超过90分钟”.为了更好地落实文件精神,某县对辖区内部分初中学生就“每天完成书面作业的时间”进行了随机调查,为便于统计学生每天完成书面作业的时间(用t表示,单位h)状况设置了如下四个选项,分别为A:,B:,C:,D:,并根据调查结果绘制了如下两幅不完整的统计图.

    请根据以上提供的信息解答下列问题:
    (1)此次调查,选项A中的学生人数是多少?
    (2)在扇形统计图中,选项D所对应的扇形圆心角的大小为多少?
    (3)如果该县有15000名初中学生,那么请估算该县“每天完成书面作业的时间不超过90分钟”的初中学生约有多少人?
    (4)请回答你每天完成书面作业的时间属于哪个选项,并对老师的书面作业布置提出合理化建议.
    【答案】(1)8人 (2)
    (3)9600人 (4)见解析
    【解析】
    【分析】(1)用选项C中的学生人数除以其所占比例求出总人数,然后用总人数减去其它三个组的人数即可求出选项A的人数;
    (2)用乘以其所占比例即可求出答案;
    (3)利用样本估计总体的思想解答即可;
    (4)答案不唯一,合理即可;如可以结合(3)小题的结果分析.
    【小问1详解】
    解:此次调查的总人数是人,
    所以选项A中的学生人数是(人);
    【小问2详解】

    选项D所对应的扇形圆心角的大小为;
    【小问3详解】

    所以估算该县“每天完成书面作业的时间不超过90分钟”的初中学生约有9600人;
    【小问4详解】
    我的作业时间属于B选项;从调查结果来看:仅有的学生符合“初中书面作业平均完成时间不超过90分钟”,还有的学生每天完成书面作业的时间超过了90分钟,所以布置的作业应该精简量少.(答案不唯一,合理即可).
    【点睛】本题考查了条形统计图和扇形统计图以及利用样本估计总体等知识,正确理解题意、从统计图中获取解题所需要的信息是解题的关键.
    18. 先化简,再求值:,其中满足.
    【答案】;
    【解析】
    【分析】先根据分式的加减计算括号内的,然后将除法转化为乘法,再根据分式的性质化简,根据负整数指数幂,特殊角的三角函数值,求得的值,最后将代入化简结果即可求解.
    【详解】解:





    ∵,
    即,
    ∴原式.
    【点睛】本题考查了分式化简求值,解题关键是熟练运用分式运算法则以及负整数指数幂,特殊角的三角函数值进行求解.
    19. 如图,直线为常数与双曲线(为常数)相交于,两点.

    (1)求直线的解析式;
    (2)在双曲线上任取两点和,若,试确定和的大小关系,并写出判断过程;
    (3)请直接写出关于不等式的解集.
    【答案】(1)
    (2)当或时,;当时,
    (3)或
    【解析】
    【分析】(1)将点代入反比例函数,求得,将点代入,得出,进而待定系数法求解析式即可求解;
    (2)根据反比例函数的性质,反比例函数在第二四象限,在每个象限内,随的增大而增大,进而分类讨论即可求解;
    (3)根据函数图象即可求解.
    【小问1详解】
    解:将点代入反比例函数,
    ∴,

    将点代入
    ∴,
    将,代入,得

    解得:,

    【小问2详解】
    ∵,,
    ∴反比例函数在第二四象限,在每个象限内,随的增大而增大,
    ∴当或时,,
    当时,根据图象可得,
    综上所述,当或时,;当时,,
    【小问3详解】
    根据图象可知,,,当时, 或.
    【点睛】本题考查了一次函数与反比例函数综合,一次函数与反比例函数交点问题,待定系数法求一次函数的解析式,反比例函数图象的性质,熟练掌握反比例函数图象的性质是解题的关键.
    20. (1)已知线段,求作,使得;(请用尺规作图,保留作图痕迹,不写作法.)
    (2)求证:直角三角形斜边上的中线等于斜边的一半.(请借助上一小题所作图形,在完善的基础上,写出已知、求证与证明.)

    【答案】(1)见解析;(2)见解析
    【解析】
    【分析】(1)作射线,在上截取,过点作的垂线,在上截取,连接,则,即为所求;
    (2)先根据题意画出图形,再证明.延长至使,连接、,因为是的中点,所以,因为,所以四边形是平行四边形,因为,所以四边形是矩形,根据矩形的性质可得出结论.
    【详解】(1)如图所示,即为所求;

    (2)已知:如图,为中斜边上的中线,,
    求证:.
    证明:延长并截取.

    ∵为边中线,∴,
    ∴四边形为平行四边形.
    ∵,
    ∴平行四边形为矩形,
    ∴,

    【点睛】本题考查了作直角三角形,直角三角形的性质,矩形的性质与判定,解答此题的关键是作出辅助线,构造出矩形,利用矩形的性质解答.
    21. 如图,在平面直角坐标系中,菱形的一边在轴正半轴上,顶点的坐标为,点是边上的动点,过点作交边于点,作交边于点,连接.设的面积为.

    (1)求关于的函数解析式;
    (2)当取何值时,的值最大?请求出最大值.
    【答案】(1)
    (2)当时,的最大值为
    【解析】
    【分析】(1)过点作于点,连接,证明是等边三角形,可得,进而证明,得出,根据三角形面积公式即可求解;
    (2)根据二次函数的性质即可求解.
    【小问1详解】
    解:如图所示,过点作于点,连接,

    ∵顶点的坐标为,
    ∴,,
    ∴,

    ∵四边形是菱形,
    ∴,,
    ∴是等边三角形,
    ∴,
    ∵,
    ∴,

    ∴是等边三角形,

    ∵,
    ∴,

    ∵,,则,





    【小问2详解】
    解:∵
    ∵,
    ∴当时,的值最大,最大值为.
    【点睛】本题考查了等边三角形的判定与性质,菱形的性质,坐标与图形,特殊角的三角函数值,二次函数的性质,相似三角形的性质与判定,熟练掌握以上知识是解题的关键.
    22. 如图,点是的内心,的延长线与边相交于点,与的外接圆相交于点.

    (1)求证:;
    (2)求证:;
    (3)求证:;
    (4)猜想:线段三者之间存在的等量关系.(直接写出,不需证明.)
    【答案】(1)见解析 (2)见解析
    (3)见解析 (4)
    【解析】
    【分析】(1)过点F作,垂足分别为,则,进而表示出两个三角形的面积,即可求解;
    (2)过点A作于点,表示出两三角形的面积,即可求解;
    (3)连接,证明得出,证明,得出,即可,恒等式变形即可求解;
    (4)连接,证明,得出,证明,得出,即可求解.
    【小问1详解】
    证明:如图所示,过点F作,垂足分别,

    ∵点是的内心,
    ∴是的角平分线,
    ∵,
    ∴,
    ∵,
    ∴;
    【小问2详解】
    证明:如图所示,过点A作于点,

    ∵,
    ∴,
    由(1)可得,
    ∴;
    【小问3详解】
    证明:连接,




    ∴,

    ∵,
    ∴,
    又,
    ∴,
    ∴,
    ∴;
    ∴,
    ∴,
    【小问4详解】
    解:如图所示,连接,

    ∵点是的内心,
    ∴是的角平分线,
    ∴,
    ∵,
    ∴,
    ∴,
    ∴,
    ∵,

    ∴,
    ∴,
    ∴.
    【点睛】本题考查了三角形内心的定义,同弧所对的圆周角相等,角平分线的性质与定义,相似三角形的性质与判定,三角形的外角性质,三角形的面积公式等知识,熟练掌握相似三角形的性质与判定是解题的关键.

    相关试卷

    2023年山东省滨州市中考数学真题试卷(解析版):

    这是一份2023年山东省滨州市中考数学真题试卷(解析版),共23页。

    精品解析:2022年山东省滨州市中考数学真题(解析版):

    这是一份精品解析:2022年山东省滨州市中考数学真题(解析版),共21页。试卷主要包含了答卷前,考生务必用0,第Ⅱ卷必须用0, 一元二次方程的根的情况为, 下列命题,其中是真命题的是等内容,欢迎下载使用。

    2022年山东省滨州市中考数学真题(解析版):

    这是一份2022年山东省滨州市中考数学真题(解析版),共21页。试卷主要包含了答卷前,考生务必用0,第Ⅱ卷必须用0, 一元二次方程的根的情况为, 下列命题,其中是真命题的是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map