所属成套资源:全国分地区2021-2023三年中考数学真题分类汇编(按题型难易度分层分类)
湖北省宜昌市2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类
展开
这是一份湖北省宜昌市2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类,共12页。试卷主要包含了先化简,再求值,求代数式+的值,其中x=2+y,解不等式组,CD=5m,如图所示,其中分组情况是等内容,欢迎下载使用。
湖北省宜昌市2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类
一.分式的化简求值(共3小题)
1.(2023•宜昌)先化简,再求值:+3,其中a=﹣3.
2.(2022•宜昌)求代数式+的值,其中x=2+y.
3.(2021•宜昌)先化简,再求值:÷﹣,从1,2,3这三个数中选择一个你认为适合的x代入求值.
二.一元二次方程的应用(共1小题)
4.(2022•宜昌)某造纸厂为节约木材,实现企业绿色低碳发展,通过技术改造升级,使再生纸项目的生产规模不断扩大.该厂3,4月份共生产再生纸800吨,其中4月份再生纸产量是3月份的2倍少100吨.
(1)求4月份再生纸的产量;
(2)若4月份每吨再生纸的利润为1000元,5月份再生纸产量比上月增加m%.5月份每吨再生纸的利润比上月增加%,则5月份再生纸项目月利润达到66万元.求m的值;
(3)若4月份每吨再生纸的利润为1200元,4至6月每吨再生纸利润的月平均增长率与6月份再生纸产量比上月增长的百分数相同,6月份再生纸项目月利润比上月增加了25%.求6月份每吨再生纸的利润是多少元?
三.解一元一次不等式(共1小题)
5.(2022•宜昌)解不等式≥+1,并在数轴上表示解集.
四.解一元一次不等式组(共1小题)
6.(2021•宜昌)解不等式组.
五.一次函数的应用(共1小题)
7.(2023•宜昌)某食用油的沸点温度远高于水的沸点温度.小聪想用刻度不超过100℃的温度计测算出这种食用油沸点的温度.在老师的指导下,他在锅中倒入一些这种食用油均匀加热,并每隔10s测量一次锅中油温,得到的数据记录如下:
时间t/s
0
10
20
30
40
油温y/℃
10
30
50
70
90
(1)小聪在直角坐标系中描出了表中数据对应的点.经老师介绍,在这种食用油达到沸点前,锅中油温y(单位:℃)与加热的时间t(单位:s)符合初中学习过的某种函数关系,填空:
可能是 函数关系(请选填“正比例”“一次”“二次”“反比例”);
(2)根据以上判断,求y关于t的函数解析式;
(3)当加热110s时,油沸腾了,请推算沸点的温度.
六.垂径定理(共1小题)
8.(2022•宜昌)石拱桥是我国古代人民勤劳和智慧的结晶(如图1),隋代建造的赵州桥距今约有1400年历史,是我国古代石拱桥的代表.如图2是根据某石拱桥的实物图画出的几何图形,桥的主桥拱是圆弧形,表示为.桥的跨度(弧所对的弦长)AB=26m,设所在圆的圆心为O,半径OC⊥AB,垂足为D.拱高(弧的中点到弦的距离)CD=5m.连接OB.
(1)直接判断AD与BD的数量关系;
(2)求这座石拱桥主桥拱的半径(精确到1m).
七.解直角三角形的应用(共1小题)
9.(2022•宜昌)知识小提示:要想使人安全地攀上斜靠在墙面上的梯子的顶端,梯子与地面所成的角α一般要满足53°≤α≤72°.(参考数据:sin53°≈0.80,cos53°≈0.60,tan53°≈1.33,sin72°≈0.95,cos72°≈0.31,tan72°≈3.08,sin66°≈0.91,cos66°≈0.41,tan66°≈2.25)
如图,现有一架长4m的梯子AB斜靠在一竖直的墙AO上.
(1)当人安全使用这架梯子时,求梯子顶端A与地面距离的最大值;
(2)当梯子底端B距离墙面1.64m时,计算∠ABO等于多少度?并判断此时人是否能安全使用这架梯子?
八.频数(率)分布直方图(共1小题)
10.(2021•宜昌)国家规定“中小学生每天在校体育活动时间不低于1h”.为此,某市就“每天在校体育活动时间”的问题随机调查了辖区内部分初中学生,根据调查结果绘制成的统计图(部分)如图所示,其中分组情况是:
A组:t<0.5h
B组:0.5h≤t<1h
C组:1h≤t<1.5h
D组:t≥1.5h
请根据上述信息解答下列问题:
(1)本次调查的人数是 人;
(2)请根据题中的信息补全频数分布直方图;
(3)D组对应扇形的圆心角为 °;
(4)本次调查数据的中位数落在 组内;
(5)若该市辖区约有80000名初中学生,请估计其中达到国家规定体育活动时间的学生人数约有多少.
湖北省宜昌市2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类
参考答案与试题解析
一.分式的化简求值(共3小题)
1.(2023•宜昌)先化简,再求值:+3,其中a=﹣3.
【答案】a+3,.
【解答】解:原式=•+3
=•+3
=a+3,
当a=﹣3时,原式=﹣3+3=.
2.(2022•宜昌)求代数式+的值,其中x=2+y.
【答案】,1.
【解答】解:原式=﹣
=
=,
当x=2+y时,原式==1.
3.(2021•宜昌)先化简,再求值:÷﹣,从1,2,3这三个数中选择一个你认为适合的x代入求值.
【答案】,1.
【解答】解:÷﹣
=•(x+1)﹣
=
=,
∵(x+1)(x﹣1)≠0,
∴x≠1,﹣1,
∴x=2或3,
当x=2时,原式==1.
二.一元二次方程的应用(共1小题)
4.(2022•宜昌)某造纸厂为节约木材,实现企业绿色低碳发展,通过技术改造升级,使再生纸项目的生产规模不断扩大.该厂3,4月份共生产再生纸800吨,其中4月份再生纸产量是3月份的2倍少100吨.
(1)求4月份再生纸的产量;
(2)若4月份每吨再生纸的利润为1000元,5月份再生纸产量比上月增加m%.5月份每吨再生纸的利润比上月增加%,则5月份再生纸项目月利润达到66万元.求m的值;
(3)若4月份每吨再生纸的利润为1200元,4至6月每吨再生纸利润的月平均增长率与6月份再生纸产量比上月增长的百分数相同,6月份再生纸项目月利润比上月增加了25%.求6月份每吨再生纸的利润是多少元?
【答案】(1)500吨;
(2)m=20;
(3)1500元.
【解答】解:(1)设3月份再生纸的产量为x吨,则4月份再生纸的产量为(2x﹣100)吨,
依题意得:x+2x﹣100=800,
解得:x=300,
∴2x﹣100=2×300﹣100=500.
答:4月份再生纸的产量为500吨.
(2)依题意得:1000(1+%)×500(1+m%)=660000,
整理得:m2+300m﹣6400=0,
解得:m1=20,m2=﹣320(不合题意,舍去).
答:m的值为20.
(3)设4至6月每吨再生纸利润的月平均增长率为y,5月份再生纸的产量为a吨,
依题意得:1200(1+y)2•a(1+y)=(1+25%)×1200(1+y)•a,
∴1200(1+y)2=1500.
答:6月份每吨再生纸的利润是1500元.
三.解一元一次不等式(共1小题)
5.(2022•宜昌)解不等式≥+1,并在数轴上表示解集.
【答案】(1)x≤1.
【解答】解:去分母得:2(x﹣1)≥3(x﹣3)+6,
去括号得:2x﹣2≥3x﹣9+6,
移项得:2x﹣3x≥﹣9+6+2,
合并同类项得:﹣x≥﹣1,
系数化为1得:x≤1.
.
四.解一元一次不等式组(共1小题)
6.(2021•宜昌)解不等式组.
【答案】x≤1.
【解答】解:,
解不等式①得:x≤1,
解不等式②得:x≤5,
∴不等式组解集为x≤1.
五.一次函数的应用(共1小题)
7.(2023•宜昌)某食用油的沸点温度远高于水的沸点温度.小聪想用刻度不超过100℃的温度计测算出这种食用油沸点的温度.在老师的指导下,他在锅中倒入一些这种食用油均匀加热,并每隔10s测量一次锅中油温,得到的数据记录如下:
时间t/s
0
10
20
30
40
油温y/℃
10
30
50
70
90
(1)小聪在直角坐标系中描出了表中数据对应的点.经老师介绍,在这种食用油达到沸点前,锅中油温y(单位:℃)与加热的时间t(单位:s)符合初中学习过的某种函数关系,填空:
可能是 一次 函数关系(请选填“正比例”“一次”“二次”“反比例”);
(2)根据以上判断,求y关于t的函数解析式;
(3)当加热110s时,油沸腾了,请推算沸点的温度.
【答案】(1)一次;
(2)y=2t+10;
(3)经过推算,该油的沸点温度是230℃.
【解答】解:(1)根据表格中两个变量对应值变化的规律可知,时间每增加10s,油的温度就升高20℃,
故锅中油温y与加热的时间t可能是一次函数关系;
故答案为:一次;
(2)设锅中油温y与加热的时间t的函数关系式为y=kt+b(k≠0),
将点(0,10),(10,30)代入得,,
解得:,
∴y=2t+10;
(3)当t=110时,y=2×110=230,
∴经过推算,该油的沸点温度是230℃.
六.垂径定理(共1小题)
8.(2022•宜昌)石拱桥是我国古代人民勤劳和智慧的结晶(如图1),隋代建造的赵州桥距今约有1400年历史,是我国古代石拱桥的代表.如图2是根据某石拱桥的实物图画出的几何图形,桥的主桥拱是圆弧形,表示为.桥的跨度(弧所对的弦长)AB=26m,设所在圆的圆心为O,半径OC⊥AB,垂足为D.拱高(弧的中点到弦的距离)CD=5m.连接OB.
(1)直接判断AD与BD的数量关系;
(2)求这座石拱桥主桥拱的半径(精确到1m).
【答案】(1)AD=BD;
(2)19m.
【解答】解:(1)∵OC⊥AB,
∴AD=BD;
(2)设主桥拱半径为R,由题意可知AB=26,CD=5,
∴BD=AB=13,
OD=OC﹣CD=R﹣5,
∵∠ODB=90°,
∴OD2+BD2=OB2,
∴(R﹣5)2+132=R2,
解得R=19.4≈19,
答:这座石拱桥主桥拱的半径约为19m.
七.解直角三角形的应用(共1小题)
9.(2022•宜昌)知识小提示:要想使人安全地攀上斜靠在墙面上的梯子的顶端,梯子与地面所成的角α一般要满足53°≤α≤72°.(参考数据:sin53°≈0.80,cos53°≈0.60,tan53°≈1.33,sin72°≈0.95,cos72°≈0.31,tan72°≈3.08,sin66°≈0.91,cos66°≈0.41,tan66°≈2.25)
如图,现有一架长4m的梯子AB斜靠在一竖直的墙AO上.
(1)当人安全使用这架梯子时,求梯子顶端A与地面距离的最大值;
(2)当梯子底端B距离墙面1.64m时,计算∠ABO等于多少度?并判断此时人是否能安全使用这架梯子?
【答案】(1)3.8m;
(2)66°,能安全使用.
【解答】解:(1)53°≤α≤72°,当α=72°时,AO取最大值,
在Rt△AOB中,sin∠ABO=,
∴AO=AB•sin∠ABO=4×sin72°=4×0.95=3.8(米),
∴梯子顶端A与地面的距离的最大值为3.8米;
(2)在Rt△AOB中,cos∠ABO==1.64÷4=0.41,
∵cos66°≈0.41,
∴∠ABO=66°,
∵53°≤α≤72°,
∴人能安全使用这架梯子.
八.频数(率)分布直方图(共1小题)
10.(2021•宜昌)国家规定“中小学生每天在校体育活动时间不低于1h”.为此,某市就“每天在校体育活动时间”的问题随机调查了辖区内部分初中学生,根据调查结果绘制成的统计图(部分)如图所示,其中分组情况是:
A组:t<0.5h
B组:0.5h≤t<1h
C组:1h≤t<1.5h
D组:t≥1.5h
请根据上述信息解答下列问题:
(1)本次调查的人数是 400 人;
(2)请根据题中的信息补全频数分布直方图;
(3)D组对应扇形的圆心角为 36 °;
(4)本次调查数据的中位数落在 C 组内;
(5)若该市辖区约有80000名初中学生,请估计其中达到国家规定体育活动时间的学生人数约有多少.
【答案】见试题解答内容
【解答】解:(1)∵A组有40人,占10%,
∴总人数为(人),
故答案为400;
(2)C组的人数为400﹣40﹣80﹣40=240(人),
统计图如下:
(3)D组所占的百分比为,
∴D组所对的圆心角为360°×10%=36°,
故答案为36;
(4)中位数为第200个数据和第201个数据的平均数,都在C组,
∴中位数在C组,
故答案为C;
(5)优秀人数所占的百分比为,
∴全市达到国家规定体育活动时间的学生人数大约为80000×70%=56000(人).
相关试卷
这是一份河南省2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类,共22页。试卷主要包含了计算,0;,0+2﹣1;,,且经过小正方形的顶点B,是水柱距地面的高度等内容,欢迎下载使用。
这是一份陕西省2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类,共30页。试卷主要包含了0+|1﹣|﹣,解方程,解不等式,解不等式组,之间的关系如图所示等内容,欢迎下载使用。
这是一份青海省2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类,共13页。试卷主要包含了计算,,其中x=+1,÷,其中a=,解方程,如图,DB是▱ABCD的对角线等内容,欢迎下载使用。