- 新高考版高考数学二轮复习(新高考版) 第1部分 专题突破 专题6 培优点9 圆锥曲线与圆的综合问题课件PPT 课件 0 次下载
- 新高考版高考数学二轮复习(新高考版) 第1部分 专题突破 专题6 微重点17 抛物线的二级结论的应用课件PPT 课件 0 次下载
- 新高考版高考数学二轮复习(新高考版) 第1部分 专题突破 专题6 微重点16 椭圆、双曲线的二级结论的应用课件PPT 课件 0 次下载
- 新高考版高考数学二轮复习(新高考版) 第2部分 回扣1 集合、常用逻辑用语、不等式课件PPT 课件 0 次下载
- 新高考版高考数学二轮复习(新高考版) 第2部分 回扣2 复数、平面向量课件PPT 课件 0 次下载
新高考版高考数学二轮复习(新高考版) 第1部分 专题突破 专题6 微重点15 离心率的范围问题课件PPT
展开第二轮复习的首要任务是把整个高中基础知识有机地结合在一起,构建出高中数学知识的结构图。下面,小编给大家带来高考数学二轮复习策略,效果是十分显著的哦!1、明确模拟练习的目的。检测知识的全面性,更是训练书写规范,表述准确的过程。2、查漏补缺,以“错”纠错。查漏补缺的过程也就是反思的过程,逐渐实现保强攻弱的目标。3、严格有规律地进行限时训练。平时如考试,并在速度体验中提高正确率。4、保证常规题型的坚持训练。做到百无一失,可适当拓展高考中难点的训练。5、注重题后反思总结。及时处理问题,争取“问题不过夜”。6、重视每次模拟考试的临考前状态的调整及考后心理的调整。以平和的心态面对高考。
微重点15 离心率的范围问题
圆锥曲线离心率的范围问题是高考的热点题型,对圆锥曲线中已知特征关系的转化是解决此类问题的关键,相关平面几何关系的挖掘应用也可使问题求解更简洁.
利用圆锥曲线的定义求离心率的范围
设椭圆的长半轴长为a1,双曲线的实半轴长为a2,不妨设|PF1|>|PF2|,
设|F1F2|=2c,
|F1F2|2=|PF1|2+|PF2|2-2|PF1||PF2|·cs∠F1PF2,
依题意作图,如图所示,由于|MN|=|F1F2|,并且线段MN,F1F2互相平分,
∴|NF1|=|MF2|,设|MF2|=x,则|MF1|=2a-x,根据勾股定理得|MF1|2+|MF2|2=|F1F2|2,即x2+(2a-x)2=4c2,整理得x2-2ax+2b2=0,
整理得2a2-2ac-c2≥0,e2+2e-2≤0,
此类题型的一般方法是利用圆锥曲线的定义,以及余弦定理或勾股定理,构造关于a,b,c的不等式或不等式组求解,要注意椭圆、双曲线离心率自身的范围.
由双曲线的定义得|PQ|+b-|QF2|=2a,所以|PQ|=2a-b+|QF2|,
所以21e2+40e-125<0,所以(3e-5)(7e+25)<0,
因为直线F1Q与双曲线的右支相交,
所以a2
利用圆锥曲线的性质求离心率的范围
(1)(2022·西安模拟)圆柱OO1的轴截面ABB1A1是正方形,过上底面圆弧上任意一点F作平面与圆柱的侧面相交,则相交所得到曲线的离心率的最大值为
过点F的平面与圆柱侧面相交,交线所形成的曲线为椭圆,如图,椭圆的短轴长为底面圆的直径,不妨令底面圆的半径为1,则短轴长2b=2,∴b=1,如图所示,当该椭圆刚好与上、下底面有一个交点时,长轴最长为EF,由图知,MENF为正方形,边长为2,
∵c2=a2-b2=a2-1,
连接OP,当P不为椭圆的上、下顶点时,设直线PA,PB分别与圆O切于点A,B,∠OPA=α,∵存在M,N使得∠MPN=120°,∴∠APB≥120°,即α≥60°,又α<90°,∴sin α≥sin 60°,
利用圆锥曲线的性质,如:椭圆的最大角,通径,三角形中的边角关系,曲线上的点到焦点距离的范围等,建立不等式(不等式组).
如图所示,A为椭圆的上顶点.依题意∠F1AF2≥90°,即∠OAF2≥45°,又|AF2|=a,|AO|=b,|OF2|=c,
∵∠OAF2≥45°,
利用几何图形的性质求离心率的范围
以F1F2为直径的圆的方程为x2+y2=c2,
解得(不妨设)P(a,b),Q(-a,-b),A(-a,0),
利用几何图形中几何量的大小,例如线段的长度、角的大小等,构造几何度量之间的关系.
双曲线C与直线y=x有交点,
双曲线上存在不是顶点的点P,使得∠PF2F1=3∠PF1F2,则P点在右支上,设PF1与y轴交于点Q,由对称性知|QF1|=|QF2|,所以∠QF1F2=∠QF2F1,所以∠PF2Q=∠PF2F1-∠QF2F1=2∠PF1F2=∠PQF2,所以|PQ|=|PF2|,所以|PF1|-|PF2|=|PF1|-|PQ|=|QF1|=2a,
在△PF1F2中,∠PF1F2+∠PF2F1=4∠PF1F2<180°,∠PF1F2<45°,
方法一 由双曲线的定义知|PF1|-|PF2|=2a,①又|PF1|=4|PF2|,②
在△PF1F2中,由余弦定理,
要求e的最大值,即求cs∠F1PF2的最小值,当cs∠F1PF2=-1时,
方法二 由双曲线的定义知,|PF1|-|PF2|=2a,又|PF1|=4|PF2|,
∵|F1F2|=2c,
依题意可得|AF1|-|AF2|=2a,又|AF1|2+|AF2|2=|F1F2|2=4c2,所以(|AF2|+2a)2+|AF2|2=4c2,
因为A在B的上方,且这两点都在C上,
又EA∥x轴,所以|ED|=|EB|,EA⊥BD,所以△BDE的内心G在线段EA上.因为DG平分∠EDA,在△EDA中,
由长轴长为4,故2a=4⇒a=2,由点Q在椭圆上,根据椭圆的定义得|QF1|+|QF2|=4,故A正确;
∴|OQ|min=b>c,
对于A,因为双曲线C的渐近线l与圆F交于A,B两点,所以过点O且与圆F相切的直线与C没有公共点(如图),故选项A正确;对于B,过点F作FD⊥l,垂足为D,易知|FD|=b,因为圆F与直线l相交,所以b设|AD|=m,则|OA|=2m,|OD|=3m,在Rt△AFD和Rt△OFD中,
消去m2,得c2=9a2-8b2,即17a2=9c2,
设双曲线C的左焦点为F′,则|QF|-|QF′|=2a,即|QF|=|QF′|+2a,故|QF|+|PQ|=|QF′|+|PQ|+2a≥|PF′|+2a.
∵|PQ|+|QF|+|PF|≥|PF′|+2a+|PF|=10+2a≥13,
新高考版高考数学二轮复习(新高考版) 第1部分 专题突破 专题6 第4讲 母题突破1 范围、最值问题课件PPT: 这是一份新高考版高考数学二轮复习(新高考版) 第1部分 专题突破 专题6 第4讲 母题突破1 范围、最值问题课件PPT,共40页。PPT课件主要包含了高考数学二轮复习策略,专题强化练等内容,欢迎下载使用。
新高考版高考数学二轮复习(新高考版) 第1部分 专题突破 专题3 微重点10 子数列问题课件PPT: 这是一份新高考版高考数学二轮复习(新高考版) 第1部分 专题突破 专题3 微重点10 子数列问题课件PPT,共49页。PPT课件主要包含了高考数学二轮复习策略,偶数项,考点一,规律方法,当n为奇数时,两数列的公共项,考点二,n2-2n,分段数列,考点三等内容,欢迎下载使用。
新高考版高考数学二轮复习(新高考版) 第1部分 专题突破 专题2 微重点8 平面向量的最值与范围问题课件PPT: 这是一份新高考版高考数学二轮复习(新高考版) 第1部分 专题突破 专题2 微重点8 平面向量的最值与范围问题课件PPT,共59页。PPT课件主要包含了求参数的最值范围,专题强化练等内容,欢迎下载使用。